The ionosphere, the upper layer of the earth's atmosphere, contains free ions and electrons, which greatly impact radio and satellite signal transmission. Correcting the observations of global navigation satellite systems (GNSS) to increase the accuracy of positioning, improving the design and performance of radio communication systems, correcting the effects of the ionosphere to improve the accuracy of radar data, better understanding atmospheric and spatial changes due to storms, solar and geomagnetic activities are some examples which demonstrate the considerable importance of ionospheric electron density (Ne) prediction. Electron density prediction is technically superior to total electron content (TEC), providing more accurate information regarding the distribution of electrons at different heights of the ionosphere. This research aims to predict the ionospheric electron density by predicting the parameters of the continuity equation using an artificial neural network. This study, which was conducted in three broad phases, predicts the electron density of the ionosphere for Iran on the 129th day of 2016. Firstly, the parameters of the continuity equation are computed using the electron density obtained from the International Ionosphere Reference (IRI), a restricted linear regression procedure, and the sun's radiant flux on grid points spaced 0.5 degrees apart. Together with the input data from the 123rd to 128th days of 2016. In the second phase, these values are used in the artificial neural network to train a feed-forward neural network. In the third stage, the ionosphere's electron density is predicted by inserting the artificial neural network's predicted parameters into the continuity differential equation. After analyzing the data, it was determined that the average RMS value of the difference between the IRI electron density and the predicted electron density on the 129th day was 1.0943×1011 for three hours, 2.3733×1010 for two hours, and 1694.5×1010 for two hours.
1. Ali, F., Hou, Y., & Feng, X. (2023). Backpropagation of Levenberg-Marquardt artificial neural networks for reverse roll coating process in the bath of Sisko fluid. The European Physical Journal Plus, 138(10), 944. doi: [DOI:10.1140/epjp/s13360-023-04579-w]
2. Boyd, S., & Vandenberghe, L. (2004). Convex Optimization. Cambridge: Cambridge University Press [DOI:10.1017/CBO9780511804441]
3. Chapman, S. (1931). The absorption and dissociative or ionizing effect of monochromatic radiation in an atmosphere on a rotating earth part II. Grazing incidence. Proceedings of the Physical Society, 43(5), 483. doi: [DOI:10.1088/0959-5309/43/5/302]
4. Dutta, S., & Cohen, M. B. (2023). Topside Electron Density Modeling Using Neural Network and Empirical Model Predictions. Space Weather, 21(12), e2023SW003501. Doi : [DOI:10.1029/2023SW003501]
5. Gholipour, N. (2019). Ionosphere total electron content prediction based on Kalman filter and artificial neural networks hybrid approach using GPS observations. (M.Sc. Thesis in Geomatics Engineering-Geodesy). K. N. Toosi University of Technology
6. Habarulema, J. B., Okoh, D., Burešová, D., Rabiu, B., Scipión, D., Häggström, I., . . . Milla, M. A. (2024). A storm-time global electron density reconstruction model in three-dimensions based on artificial neural networks. Advances in Space Research. doi: [DOI:10.1016/j.asr.2024.02.014]
7. Huang, S., Li, W., Shen, X.-C., Ma, Q., Chu, X., Ma, D., . . . Goldstein, J. (2022). Application of Recurrent Neural Network to Modeling Earth's Global Electron Density. Journal of Geophysical Research: Space Physics, 127(9), e2022JA030695. doi: [DOI:10.1029/2022JA030695]
8. Liu, B., Wang, M., Zhang, S., Wang, X., Nemati, S., Li, H., . . . Xu, J. (2024). Inversion of the Electron Density in the Lower Ionosphere Using Artificial Intelligence. IEEE Antennas and Wireless Propagation Letters, 23(5), 1618-1622. doi: [DOI:10.1109/LAWP.2024.3364089]
9. Li, J., Huang, D., Wang, Y., Zhao, Y., & Hassan, A. (2020). A new model for total electron content based on ionospheric continuity equation. Advances in Space Research, 66(4), 911-931. doi: [DOI:10.1016/j.asr.2020.04.048]
10. Mahbuby, H. (2022). Regional Assimilation of GPS-Derived Ionospheric Electron Densities into the Physical Model of Ionosphere. (Doctor of Philosophy (Ph.D.) in Geodesy). K. N. Toosi University of Technology
11. Matzka, J., Stolle, C., Yamazaki, Y., Bronkalla, O., & Morschhauser, A. (2021). The Geomagnetic Kp Index and Derived Indices of Geomagnetic Activity. Space Weather, 19(5), e2020SW002641. doi: [DOI:10.1029/2020SW002641]
12. Morton, K. W., & Mayers, D. F. (2005). Numerical solution of partial differential equations: an introduction: Cambridge university press. [DOI:10.1017/CBO9780511812248]
13. Norsuzila, Y. a., Mardina, A., & Mahamod, I. (2010). GPS Total Electron Content (TEC) Prediction at Ionosphere Layer over the Equatorial Region. In J. B. Christos (Ed.), Trends in Telecommunications Technologies (pp. Ch. 23). Rijeka: IntechOpen.
14. Prölss, G. (2004). Physics of the Earth's Space Environment: An Introduction: Springer Berlin Heidelberg [DOI:10.1007/978-3-642-97123-5]
15. Zolesi, B., & Cander, L. R. (2014). Ionospheric Models for Prediction and Forecasting. In Ionospheric Prediction and Forecasting (pp. 101-121). Berlin, Heidelberg: Springer Berlin Heidelberg. [DOI:10.1007/978-3-642-38430-1]
Kakanj M M, Amerian Y, Mahbuby H. Estimation of Ionospheric Electron Density Physical Perdiction Model Parameters Using Artificial Neural Network. JGST 2024; 14 (2) : 9 URL: http://jgst.issgeac.ir/article-1-1199-en.html