1. Ali, F., Hou, Y., & Feng, X. (2023). Backpropagation of Levenberg-Marquardt artificial neural networks for reverse roll coating process in the bath of Sisko fluid. The European Physical Journal Plus, 138(10), 944. doi: [ DOI:10.1140/epjp/s13360-023-04579-w] 2. Boyd, S., & Vandenberghe, L. (2004). Convex Optimization. Cambridge: Cambridge University Press [ DOI:10.1017/CBO9780511804441] 3. Chapman, S. (1931). The absorption and dissociative or ionizing effect of monochromatic radiation in an atmosphere on a rotating earth part II. Grazing incidence. Proceedings of the Physical Society, 43(5), 483. doi: [ DOI:10.1088/0959-5309/43/5/302] 4. Dutta, S., & Cohen, M. B. (2023). Topside Electron Density Modeling Using Neural Network and Empirical Model Predictions. Space Weather, 21(12), e2023SW003501. Doi : [ DOI:10.1029/2023SW003501] 5. Gholipour, N. (2019). Ionosphere total electron content prediction based on Kalman filter and artificial neural networks hybrid approach using GPS observations. (M.Sc. Thesis in Geomatics Engineering-Geodesy). K. N. Toosi University of Technology 6. Habarulema, J. B., Okoh, D., Burešová, D., Rabiu, B., Scipión, D., Häggström, I., . . . Milla, M. A. (2024). A storm-time global electron density reconstruction model in three-dimensions based on artificial neural networks. Advances in Space Research. doi: [ DOI:10.1016/j.asr.2024.02.014] 7. Huang, S., Li, W., Shen, X.-C., Ma, Q., Chu, X., Ma, D., . . . Goldstein, J. (2022). Application of Recurrent Neural Network to Modeling Earth's Global Electron Density. Journal of Geophysical Research: Space Physics, 127(9), e2022JA030695. doi: [ DOI:10.1029/2022JA030695] 8. Liu, B., Wang, M., Zhang, S., Wang, X., Nemati, S., Li, H., . . . Xu, J. (2024). Inversion of the Electron Density in the Lower Ionosphere Using Artificial Intelligence. IEEE Antennas and Wireless Propagation Letters, 23(5), 1618-1622. doi: [ DOI:10.1109/LAWP.2024.3364089] 9. Li, J., Huang, D., Wang, Y., Zhao, Y., & Hassan, A. (2020). A new model for total electron content based on ionospheric continuity equation. Advances in Space Research, 66(4), 911-931. doi: [ DOI:10.1016/j.asr.2020.04.048] 10. Mahbuby, H. (2022). Regional Assimilation of GPS-Derived Ionospheric Electron Densities into the Physical Model of Ionosphere. (Doctor of Philosophy (Ph.D.) in Geodesy). K. N. Toosi University of Technology 11. Matzka, J., Stolle, C., Yamazaki, Y., Bronkalla, O., & Morschhauser, A. (2021). The Geomagnetic Kp Index and Derived Indices of Geomagnetic Activity. Space Weather, 19(5), e2020SW002641. doi: [ DOI:10.1029/2020SW002641] 12. Morton, K. W., & Mayers, D. F. (2005). Numerical solution of partial differential equations: an introduction: Cambridge university press. [ DOI:10.1017/CBO9780511812248] 13. Norsuzila, Y. a., Mardina, A., & Mahamod, I. (2010). GPS Total Electron Content (TEC) Prediction at Ionosphere Layer over the Equatorial Region. In J. B. Christos (Ed.), Trends in Telecommunications Technologies (pp. Ch. 23). Rijeka: IntechOpen. 14. Prölss, G. (2004). Physics of the Earth's Space Environment: An Introduction: Springer Berlin Heidelberg [ DOI:10.1007/978-3-642-97123-5] 15. Zolesi, B., & Cander, L. R. (2014). Ionospheric Models for Prediction and Forecasting. In Ionospheric Prediction and Forecasting (pp. 101-121). Berlin, Heidelberg: Springer Berlin Heidelberg. [ DOI:10.1007/978-3-642-38430-1]
|