1. Faraji, L., & Karimi, M. (2022). Botanical gardens as valuable resources in plant sciences. Biodiversity and Conservation, 31(12), 2905-2926. [ DOI:10.1007/s10531-019-01926-1] 2. Karar, M. E., Alsunaydi, F., Albusaymi, S., & Alotaibi, S. (2021). A new mobile application of agricultural pests recognition using deep learning in cloud computing system. Alexandria Engineering Journal, 60(5), 4423-4432. [ DOI:10.1016/j.aej.2021.03.009] 3. Singh, B. K., Delgado-Baquerizo, M., Egidi, E., Guirado, E., Leach, J. E., Liu, H., & Trivedi, P. (2023). Climate change impacts on plant pathogens, food security, and paths forward. Nature Reviews Microbiology, 21(10), 640-656. [ DOI:10.1038/s41579-023-00900-7] 4. Mathenge, M. (2022). The Spatial Dimension of Agriculture and Food Security: A GIS-based Spatially Explicit Approach for Integration of Smallholder Agriculture into Agribusiness. 5. Singh, A., Mehrotra, R., Rajput, V. D., Dmitriev, P., Singh, A. K., Kumar, P., ... & Singh, A. K. (2022). Geoinformatics, artificial intelligence, sensor technology, big data: emerging modern tools for sustainable agriculture. Sustainable agriculture systems and technologies, 295-313. [ DOI:10.1002/9781119808565.ch14] 6. Kumar, P., Singh, A., Rajput, V. D., Yadav, A. K. S., Kumar, P., Singh, A. K., & Minkina, T. (2022). Role of artificial intelligence, sensor technology, big data in agriculture: next-generation farming. In Bioinformatics in Agriculture (pp. 625-639). Academic Press. [ DOI:10.1016/B978-0-323-89778-5.00035-0] 7. Goodchild, M. F. (2007). Citizens as sensors: the world of volunteered geography. GeoJournal, 69, 211-221. [ DOI:10.1007/s10708-007-9111-y] 8. Roberts, D. P., Short Jr, N. M., Sill, J., Lakshman, D. K., Hu, X., & Buser, M. (2021). Precision agriculture and geospatial techniques for sustainable disease control. Indian Phytopathology, 74(2), 287-305. [ DOI:10.1007/s42360-021-00334-2] 9. Wu, Q., Zeng, J., & Wu, K. (2022). Research and application of crop pest monitoring and early warning technology in China. Frontiers of Agricultural Science and Engineering, 9(1), 19-36. [ DOI:10.15302/J-FASE-2021411] 10. Stankovic, M., Neftenov, N., & Gupta, R. (2022). Use of Digital Tools in Fighting Climate Change: A Review of Best Practices. Available online: https://bit. ly/3Gxodt6. 11. Gebresenbet, G., Bosona, T., Patterson, D., Persson, H., Fischer, B., Mandaluniz, N., Chirici, G., Zacepins, A., Komasilovs, V., Pitulac, T. and Nasirahmadi, A. (2023). A concept for application of integrated digital technologies to enhance future smart agricultural systems. Smart agricultural technology, 5, p.100255. [ DOI:10.1016/j.atech.2023.100255] 12. Aithal, S., & Aithal, P. S. (2024). Information Communication and Computation Technologies (ICCT) for Agricultural and Environmental Information Systems for Society 5.0. International Journal of Applied Engineering and Management Letters (IJAEML), 8(1), 67-100. [ DOI:10.47992/IJAEML.2581.7000.0213] 13. Faqih, F. (2018). The complete book of figs, Farhangestaneadab, Fars, Iran, (in Persian). 14. Zaman, S. (2020). Examining the relationships between environmental values, knowledge, and preferences using public participatory geographic information systems. 15. Pandey, P. C., & Pandey, M. (2023). Highlighting the role of agriculture and geospatial technology in food security and sustainable development goals. Sustainable Development, 31(5), 3175-3195. [ DOI:10.1002/sd.2600] 16. Dhanaraju, M., Chenniappan, P., Ramalingam, K., Pazhanivelan, S., & Kaliaperumal, R. (2022). Smart farming: Internet of Things (IoT)-based sustainable agriculture. Agriculture, 12(10), 1745. [ DOI:10.3390/agriculture12101745] 17. Morchid, A., El Alami, R., Raezah, A. A., & Sabbar, Y. (2023). Applications of internet of things (IoT) and sensors technology to increase food security and agricultural Sustainability: Benefits and challenges. Ain Shams Engineering Journal, 102509. [ DOI:10.1016/j.asej.2023.102509] 18. Ebitu, L., Avery, H., Mourad, K. A., & Enyetu, J. (2021). Citizen science for sustainable agriculture-A systematic literature review. Land use policy, 103, 105326. [ DOI:10.1016/j.landusepol.2021.105326] 19. Dong, Y., Xu, F., Liu, L., Du, X., Ren, B., Guo, A., Geng, Y., Ruan, C., Ye, H., Huang, W., & Zhu, Y. (2020). Automatic system for crop pest and disease dynamic monitoring and early forecasting. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 4410-4418. [ DOI:10.1109/JSTARS.2020.3013340] 20. Jelokhani-Niaraki, S., & Omidipour, M. (2023). Development and Implementation of a Web-based GIS for Registering and Monitoring the Livestock and Poultry Genetic Resources. Brazilian Archives of Biology and Technology, 66, e23220759. [ DOI:10.1590/1678-4324-2023220759] 21. Avanidou, K., Alexandridis, T., Kavroudakis, D., & Kizos, T. (2023). Development of a multi scale interactive web-GIS system to monitor farming practices: a case study in Lemnos Island, Greece. Smart Agricultural Technology, 5, 100313. [ DOI:10.1016/j.atech.2023.100313] 22. Rano, S. H., Afroz, M., & Rahman, M. M. (2022). Application of GIS on monitoring agricultural insect pests: a review. Reviews In Food And Agriculture, 3(1), 19-23. [ DOI:10.26480/rfna.01.2022.19.23] 23. Mathenge, M., Sonneveld, B. G., & Broerse, J. E. (2022). Application of GIS in agriculture in promoting evidence-informed decision making for improving agriculture sustainability: a systematic review. Sustainability, 14(16), 9974. [ DOI:10.3390/su14169974] 24. Raihan, A. (2024). A Systematic Review of Geographic Information Systems (GIS) in Agriculture for Evidence-Based Decision Making and Sustainability. Global Sustainability Research, 3(1), 1-24. [ DOI:10.56556/gssr.v3i1.636] 25. Papafilippaki, A., Stavroulakis, G., & Petropoulos, G. P. (2022). Geoinformation Technologies in Pest Management: Mapping Olive Fruit Fly Population in Olive Trees. In Information and Communication Technologies for Agriculture-Theme I: Sensors (pp. 289-304). Cham: Springer International Publishing. [ DOI:10.1007/978-3-030-84144-7_12] 26. Ali, M., Nessa, B., Khatun, M., Salam, M., & Kabir, M. (2021). A way forward to combat insect pest in rice. Bangladesh Rice J, 25(1), 1-22. [ DOI:10.3329/brj.v25i1.55176] 27. Ghimire, D. (2020). Comparative study on Python web frameworks: Flask and Django. 28. Gábor, F. (2020). Creating the foundations of a universal client-side Web GIS system. 29. Faqih, F. (2014). Drought control solutions in rainfed orchards: (case study: rainfed fig orchards), University jihad of mashhad, Razavi Khorasan, Iran, (in Persian). 30. Gao, W., Chen, N., Chen, J., Gao, B., Xu, Y., Weng, X., & Jiang, X. (2024). A Novel and Extensible Remote Sensing Collaboration Platform: Architecture Design and Prototype Implementation. ISPRS International Journal of Geo-Information, 13(3), 83. [ DOI:10.3390/ijgi13030083] 31. White, C. T., Petrasova, A., Petras, V., Tateosian, L. G., Vukomanovic, J., Mitasova, H., & Meentemeyer, R. K. (2023). An open-source platform for geospatial participatory modeling in the cloud. Environmental Modelling & Software, 167, 105767. [ DOI:10.1016/j.envsoft.2023.105767] 32. Hadj Kaddour, N. Z., Meguenni, B., Benshila, N., Bouakkaz, K., & Mebrek, A. (2022). Development of a collaborative platform for intelligent territorial mapping of the city of ORAN. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 48, 175-180. [ DOI:10.5194/isprs-archives-XLVIII-4-W1-2022-175-2022] 33. Jan, J. F. (2018). Application of Citizen Science and Volunteered Geographic Information (VGI): Tourism Development for Rural Communities. Big Data in Computational Social Science and Humanities, 29-44. [ DOI:10.1007/978-3-319-95465-3_2] 34. Hosseini, F. S., Jelokhani-Niaraki, M., & Faraji-Sabokbar, H. (2022). Developing a participatory WebGIS for monitoring the physical problems of rural settlements. Intercontinental Geoinformation Days, 4, 55-57. 35. Jelokhani-Niaraki M R, Rahmani M, Kiavarz M. (2021). Evaluation of Citizens' Efforts in Participatory Production of Spatial Data. Journal of Geomatics Science and Technology, 11(1), 79-90, (in Persian). 36. Fatehian, S., Jelokhani-Niaraki, M., Kakroodi, A. A., Dero, Q. Y., & Samany, N. N. (2018). A volunteered geographic information system for managing environmental pollution of coastal zones: A case study in Nowshahr, Iran. Ocean & coastal management, 163, 54-65. [ DOI:10.1016/j.ocecoaman.2018.06.008] 37. Salahudin, S., Husaini, H., Anwar, A., & Zulfan, Z. (2020). Web-Gis Application Of Agricultural And Food Crop Management. Journal of Engineering and Scientific Research, 2(1), 25-30. [ DOI:10.23960/jesr.v2i1.39] 38. Jakubowska, M., Dobosz, R., Zawada, D., & Kowalska, J. (2022). A review of crop protection methods against the twospotted spider mite-Tetranychus urticae Koch (Acari: Tetranychidae)-with special reference to alternative methods. Agriculture, 12(7), 898. [ DOI:10.3390/agriculture12070898] 39. Marini, F., Weyl, P., Vidović, B., Petanović, R., Littlefield, J., Simoni, S., de Lillo, E., Cristofaro, M., & Smith, L. (2021). Eriophyid mites in classical biological control of weeds: Progress and challenges. Insects, 12(6), 513. [ DOI:10.3390/insects12060513] 40. Shahi, K. (2023). Volunteered Geographic Information (VGI) in Spatial Data Infrastructure (SDI) Continuum. EAI Endorsed Transactions on Internet of Things, 9(1), e3-e3. [ DOI:10.4108/eetiot.v9i1.2979] 41. Naghavi, M., Alesheikh, A. A., Hakimpour, F., Vahidnia, M. H., & Vafaeinejad, A. (2022). VGI-based spatial data infrastructure for land administration. Land Use Policy, 114, 105969. [ DOI:10.1016/j.landusepol.2021.105969]
|