[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Browse::
Journal Info::
Guide for Authors::
Submit Manuscript::
Articles archive::
For Reviewers::
Contact us::
Site Facilities::
Reviewers::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 14, Issue 2 (12-2024) ::
JGST 2024, 14(2): 105-118 Back to browse issues page
Assessment of Sidewalk Accessibility for Wheelchair Users Considering Dynamic Environmental Factors (Rainfall)
Maryam Naghdizadeganjahromi , Najmeh Neysani samany * , Mir-Abolfazl Mostafavi
Abstract:   (327 Views)
Facilitating autonomous movement is essential for individuals coping with mobility impairments in their everyday activities. However, their movement is frequently restricted by environmental and social factors. This limitation is exacerbated during adverse weather conditions, such as precipitation, which poses challenges to the accessibility of sidewalks, particularly for wheelchair users. This article delves into the examination of sidewalk accessibility for people with mobility impairments, with a specific focus on wheelchair users, during the rainy season. The primary objective of this study is to explore the impact of environmental factors, including dynamic elements like precipitation, on the independent movement of individuals with mobility impairments. The proposed methodology involves assessing the confidence level of users when encountering different sidewalk components under varying precipitation intensities. A fuzzy decision-making model is then employed to evaluate the overall accessibility of sidewalks. In addition to providing accessibility maps tailored to different rainfall intensities, this research utilizes a similarity index to compare the effects of varying precipitation intensities on different sidewalk components. The results obtained underscore the significant influence of rainfall intensity on the accessibility of each segment of the sidewalk. Therefore, it is imperative to factor in precipitation intensity when considering and planning for the accessibility needs of individuals with mobility impairments. While most sections of the sidewalk remain accessible to wheelchair users during light rainfall, increased precipitation significantly diminishes accessibility, reducing it to an average level across most areas. Furthermore, during extreme rainfall, accessibility in sections with narrow widths and poor surface quality becomes severely limited.
 
Article number: 7
Keywords: Accessibility, rainfall, wheelchair user's mobility, sidewalks
Full-Text [PDF 960 kb]   (236 Downloads)    
Type of Study: Research | Subject: GIS
Received: 2024/01/6
References
1. Noreau, L. O., & Fougeyrollas, P. O. (s.d.). Long-term consequences of spinal cord injury on social participation: the occurrence of handicap situations. Repéré à www.tandf.co
2. Wang, Y., Chau, C. K., Ng, W. Y., & Leung, T. M. (2016). A review on the effects of physical built environment attributes on enhancing walking and cycling activity levels within residential neighborhoods. Cities, 50, 1-15. [DOI:10.1016/j.cities.2015.08.004]
3. Gharebaghi, A., Mostafavi, M. A., Chavoshi, S. H., Edwards, G., & Fougeyrollas, P. (2018). The role of social factors in the accessibility of urban areas for people with motor disabilities. ISPRS International Journal of Geo-Information, 7(4). [DOI:10.3390/ijgi7040131]
4. Orellana, D., Bustos, M. E., Marín-Palacios, M., Cabrera-Jara, N., & Hermida, M. A. (2020). Walk'n'roll: Mapping street-level accessibility for different mobility conditions in Cuenca, Ecuador. Journal of Transport and Health, 16. [DOI:10.1016/j.jth.2020.100821]
5. Wheeler, B., Syzdykbayev, M., Karimi, H. A., Gurewitsch, R., & Wang, Y. (2020b). Personalized accessible wayfinding for people with disabilities through standards and open geospatial platforms in smart cities. Open Geospatial Data, Software and Standards, 5(1). [DOI:10.1186/s40965-020-00075-5]
6. (Revue Développement Humain, Handicap et Changement Social Journal of Human Development, Disability, and Social Change ACTES DU COLLOQUE-Pour Une Ville Inclusive : Innovations et Partenariats. Proceedings of the Colloquium-For an Inclusive City: Innovations and Partnership, n.d.)
7. Gharebaghi, A., Mostafavi, M. A., Edwards, G., Fougeyrollas, P., Gamache, S., & Grenier, Y. (2018a). Integration of the social environment in a mobility ontology for people with motor disabilities. Disability and Rehabilitation: Assistive Technology, 13(6), 540-551. [DOI:10.1080/17483107.2017.1344887]
8. Gharebaghi, A., Mostafavi, M. A., Edwards, G., Fougeyrollas, P., Morales-Coayla, P., Routhier, F., Leblond, J., & Noreau, L. (2017a). A confidence-based approach for the assessment of accessibility of pedestrian network for manual wheelchair users. Lecture Notes in Geoinformation and Cartography, 463-477. [DOI:10.1007/978-3-319-57336-6_32]
9. Wheeler, B., Syzdykbayev, M., Karimi, H. A., Gurewitsch, R., & Wang, Y. (2020a). Personalized accessible wayfinding for people with disabilities through standards and open geospatial platforms in smart cities. Open Geospatial Data, Software and Standards, 5(1). [DOI:10.1186/s40965-020-00075-5]
10. Hara, K., Chan, C., & Froehlich, J. E. (2016). The design of assistive location-based technologies for people with ambulatory disabilities: A formative study. Conference on Human Factors in Computing Systems - Proceedings, 1757-1768. [DOI:10.1145/2858036.2858315]
11. Prémont, M. É., Vincent, C., & Mostafavi, M. A. (2020). Geospatial assistive technologies: potential usability criteria identified from manual wheelchair users. Disability and Rehabilitation: Assistive Technology, 15(8), 844-855. [DOI:10.1080/17483107.2019.1620351]
12. Bolten, N., Mukherjee, S., Sipeeva, V., Tanweer, A., & Caspi, A. (2017). A pedestrian-centered data approach for equitable access to urban infrastructure environments. IBM Journal of Research and Development, 61(6), 101-1012. [DOI:10.1147/JRD.2017.2736279]
13. Naude, A., de Jong, T., & van Teefelen, P. (1999). Measuring Accessibility with GIS-Tools: A Case Study of the Wild Coast of South Africa. Transactions in GIS, 3(4), 381-395. [DOI:10.1111/1467-9671.00033]
14. Kasemsuppakorn, P., & Karimi, H. A. (2009). Personalised routing for wheelchair navigation. Journal of Location Based Services, 3(1), 24-54. [DOI:10.1080/17489720902837936]
15. Pérez-Delhoyo, R., García-Mayor, C., Mora, H., Gilart-Iglesias, V., & Andújar-Montoya, M. D. (2017). Improving urban accessibility: A methodology for urban dynamics analysis in smart, sustainable and inclusive cities. International Journal of Sustainable Development and Planning, 12(3), 357-367. [DOI:10.2495/SDP-V12-N3-357-367]
16. Tajgardoon, M., & Karimi, H. A. (2015). Simulating and visualizing sidewalk accessibility for wayfinding of people with disabilities. International Journal of Cartography, 1(1), 79-93. [DOI:10.1080/23729333.2015.1055646]
17. Menkens, C., Sussmann, J., Al-Ali, M., Breitsameter, E., Frtunik, J., Nendel, T., & Schneiderbauer, T. (n.d.). EasyWheel-A Mobile Social Navigation and Support System for Wheelchair Users.
18. Gharebaghi, A., Mostafavi, M. A., Edwards, G., Fougeyrollas, P., Gamache, S., & Grenier, Y. (2018b). Integration of the social environment in a mobility ontology for people with motor disabilities. Disability and Rehabilitation: Assistive Technology, 13(6), 540-551. [DOI:10.1080/17483107.2017.1344887]
19. Mostafavi, M. A., Noreau, L., Edwards, G., Fougeyrola, P., Hubert, F., Vincent, C., & Routhier, F. (2014). Urban Accessibility in Action: Development of a Geospatial assistive technology for navigation of people with motor disabilities. Géocongrès, October.
20. Gharebaghi, A., Mostafavi, M. A., Edwards, G., Fougeyrollas, P., Morales-Coayla, P., Routhier, F., Leblond, J., & Noreau, L. (2017b). A confidence-based approach for the assessment of accessibility of pedestrian network for manual wheelchair users. Lecture Notes in Geoinformation and Cartography, 463-477. [DOI:10.1007/978-3-319-57336-6_32]
21. Mackett, R.L., Achuthan K., and Titheridge H. (2008). AMELIA: making streets more accessible for people with mobility difficulties. URBAN DESIGN International, 13:80-89 [DOI:10.1057/udi.2008.12]
22. Sobek, A. D., & Miller, H. J. (2006). U-Access: A web-based system for routing pedestrians of differing abilities. Journal of Geographical Systems, 8(3), 269-287. [DOI:10.1007/s10109-006-0021-1]
23. Volker, T., & Weber, G. (2008). RouteChecker: Personalized multicriteria routing for mobility impaired pedestrians. In The 10th international A CM SIGACCESS conference on computers and accessibility (pp. 185-192). Halifax, NS: ACM [DOI:10.1145/1414471.1414506]
24. Matthews, H., Beale, L., Picton, P. and Briggs, D. (2003). Modelling Access with GIS in Urban Systems MAGUS): capturing the experiences of wheelchair users. Area, 35(1):34-45 [DOI:10.1111/1475-4762.00108]
25. Mobasheri, A., Deister, J., & Dieterich, H. (2017). Wheelmap: the wheelchair accessibility crowdsourcing platform. Open Geospatial Data, Software and Standards, 2(1). [DOI:10.1186/s40965-017-0040-5]
26. Ward, E. (2023). Whether or not to go: the travel impact of nuisance flooding and heavy rain for disabled and older people.
27. Darko, J., Folsom, L., Pugh, N., Park, H., Shirzad, K., Owens, J., & Miller, A. (2022). Adaptive personalized routing for vulnerable road users. IET Intelligent Transport Systems, 16(8), 1011-1025. [DOI:10.1049/itr2.12191]
28. Zhao, J., Guo, C., Zhang, R., Guo, D., & Palmer, M. (2019). Impacts of weather on cycling and walking on twin trails in Seattle. Transportation research part D: transport and environment, 77, 573-588. [DOI:10.1016/j.trd.2019.09.022]
29. Baker, S. (2022). Perceived Accessibility of Unstructured Physical Activity for Manual Wheelchair Users: A Comparative Evaluation of Socioecological Barriers and Facilitators between US and Scandinavian Urban and Rural Settings (Doctoral dissertation, Colorado College).
30. Lindsay, S., Morales, E., Yantzi, N., Vincent, C., Howell, L., & Edwards, G. (2015). The experiences of participating in winter among youths with a physical disability compared with their typically developing peers. Child: care, health and development, 41(6), 980-988. [DOI:10.1111/cch.12220]
31. Pan, H., Zhang, J., & Song, W. (2020). Experimental study of pedestrian flow mixed with wheelchair users through funnel-shaped bottlenecks. Journal of Statistical Mechanics: Theory and Experiment, 2020(3), 033401. [DOI:10.1088/1742-5468/ab6b1c]
32. Ripat, J., Borisoff, J. F., Grant, L. E., & Chan, F. H. (2018). Patterns of community participation across the seasons: A year-long case study of three Canadian wheelchair users. Disability and rehabilitation, 40(6), 722-731. [DOI:10.1080/09638288.2016.1271463]
33. Czarnecki, K. (2018). Operational world model ontology for automated driving systems-part 2: Road users, animals, other obstacles, and environmental conditions,". Waterloo Intelligent Systems Engineering Lab (WISE) Report, University of Waterloo.
34. Ripat, J., & Colatruglio, A. (2016). Exploring winter community participation among wheelchair users: an online focus group. Occupational therapy in health care, 30(1), 95-106. [DOI:10.3109/07380577.2015.1057669]
35. Opach, T., Navarra, C., Rød, J. K., & Neset, T. S. (2021). Pedestrian routing and perspectives: WayFinder's route down the lane-Come on with the rain. ISPRS International Journal of Geo-Information, 10(6), 365. [DOI:10.3390/ijgi10060365]
36. Fougeyrollas, P. (2002). L'évolution conceptuelle internationale dans le champ du handicap : enjeux socio-politiques et contributions québécoises. Perspectives Interdisciplinaires Sur Le Travail et La Santé, 4-2. [DOI:10.4000/pistes.3663]
37. Socharoentum, M., & Karimi, H. A. (2016). Multi-modal transportation with multi-criteria walking (MMT-MCW): Personalized route recommender. Computers, Environment and Urban Systems, 55, 44-54. [DOI:10.1016/j.compenvurbsys.2015.10.005]
38. Karimi, H. A., Zhang, L., & Benner, J. G. (2014). Personalized accessibility map (PAM): a novel assisted wayfinding approach for people with disabilities. Annals of GIS, 20(2), 99-108. [DOI:10.1080/19475683.2014.904438]
39. Rushton, P. W., Miller, W. C., Lee Kirby, R., Eng, J. J., & Yip, J. (2011). Development and content validation of the Wheelchair Use Confidence Scale: a mixed-methods study. Disability and Rehabilitation: Assistive Technology, 6(1), 57-66. [DOI:10.3109/17483107.2010.512970]
40. Neis, P. (2015). Measuring the reliability of wheelchair user route planning based on volunteered geographic information. Transactions in GIS, 19(2), 188-201. [DOI:10.1111/tgis.12087]
41. MANOBS - manual of surface weather observations, Meteorological Service of Canada, 2013.
42. Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338-353. [DOI:10.1016/S0019-9958(65)90241-X]
43. Malczewski, J. (1999). GIS and multicriteria decision analysis. John Wiley & Sons.
44. Chen, C. T. (2000). Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy sets and systems, 114(1), 1-9. [DOI:10.1016/S0165-0114(97)00377-1]
45. Dong, Li, & Li. (2009). "A survey of image retrieval with high-level semantics". Pattern Recognition, 42(9), pp. 1857-1881.
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Naghdizadeganjahromi M, Neysani samany N, Mostafavi M. Assessment of Sidewalk Accessibility for Wheelchair Users Considering Dynamic Environmental Factors (Rainfall). JGST 2024; 14 (2) : 7
URL: http://jgst.issgeac.ir/article-1-1171-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 14, Issue 2 (12-2024) Back to browse issues page
نشریه علمی علوم و فنون نقشه برداری Journal of Geomatics Science and Technology