Soil moisture is a highly significant variable in hydrological issues, playing a crucial role in hydrological modeling, quantitative meteorological forecasting, and the analysis of issues such as drought, forest fires, climate change, and water resource management. In recent years, remote sensing has gained significant attention for soil moisture estimation due to its speed, regular coverage, extensive reach, and cost-effectiveness. However, one of the primary concerns for remote sensing specialists in soil moisture estimation is the provision of ground-truth data. In this research, the design and development of a ground-based soil moisture sensor were undertaken, which is capable of measuring soil moisture, collecting spatial data, and displaying and storing this information to provide ground-truth soil moisture data. Using this sensor, along with remote sensing imagery and artificial intelligence (AI) methods, it is possible to estimate soil moisture across a vast area. This process involves the simultaneous use of the sensor for sampling a small area during the satellite pass over the targeted region, which is then used to train the selected AI model. The trained model subsequently estimates soil moisture over the desired area using remote sensing imagery. Factors such as soil texture, soil electrolytes, and temperature impact the sensor’s measurements. Therefore, evaluating these influencing factors and ensuring appropriate environmental conditions during laboratory testing and sensor calibration are critically important. The laboratory process will reveal the specific conditions and extent to which these factors affect the sensor’s output. In the sensor calibration process, a third-degree polynomial regression model was developed to determine the soil’s gravimetric moisture content, achieving an accuracy of 0.95% for gravimetric soil moisture content and a coefficient of determination of 97%.
Type of Study: Research |
Subject: Photo&RS Received: 2023/08/18
References
1. Heathman, G. C., Starks, P. J., Ahuja, L. R., & Jackson, T. J. (2003). Assimilation of surface soil moisture to estimate profile soil water content. Journal of Hydrology, 279(1-4), 1-17. [DOI:10.1016/S0022-1694(03)00088-X]
2. Bruen, M. (2000). Using radar information in hydrological modeling: COST 717 WG-1 activities. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 25(10-12), 1305-1310. [DOI:10.1016/S1464-1909(00)00199-4]
3. Wilder, P., Su, Z., Robeling, R. A., Schulz, J., Holleman, I., Levizzani, V., ... & Wang, L. (2011). Observation of hydrological processes using remote sensing (No. GSFC. BOOK. 5769.2011).
4. Ni‐Meister, W., Walker, J. P., & Houser, P. R. (2005). Soil moisture initialization for climate prediction: Characterization of model and observation errors. Journal of Geophysical Research: Atmospheres, 110(D13). [DOI:10.1029/2004JD005745]
5. Andreadis, K. M., & Schumann, G. J. (2014). Estimating the impact of satellite observations on the predictability of large-scale hydraulic models. Advances in water resources, 73, 44-54. [DOI:10.1016/j.advwatres.2014.06.006]
6. Houser, P. R., Shuttleworth, W. J., Famiglietti, J. S., Gupta, H. V., Syed, K. H., & Goodrich, D. C. (1998). Integration of soil moisture remote sensing and hydrologic modeling using data assimilation. Water resources research, 34(12), 3405-3420. [DOI:10.1029/1998WR900001]
7. Yang, S. E., & Wu, B. F. (2010, January). Agricultural drought monitoring using web-serviced remote sensing data. In 2010 International Conference on e-Education, e-Business, e-Management and e-Learning (pp. 532-535). IEEE. [DOI:10.1109/IC4E.2010.61]
8. Aubert, D., Loumagne, C., & Oudin, L. (2003). Sequential assimilation of soil moisture and streamflow data in a conceptual rainfall-runoff model. Journal of hydrology, 280(1-4), 145-161. [DOI:10.1016/S0022-1694(03)00229-4]
9. Berthet, L., Andréassian, V., Perrin, C., & Javelle, P. (2009). How crucial is it to account for the antecedent moisture conditions in flood forecasting? Comparison of event-based and continuous approaches on 178 catchments. Hydrology and Earth System Sciences, 13(6), 819-831. [DOI:10.5194/hess-13-819-2009]
10. Attarzadeh, R., Amini, J., Notarnicola, C., & Greifeneder, F. (2018). Synergetic use of Sentinel-1 and Sentinel-2 data for soil moisture mapping at plot scale. Remote Sensing, 10(8), 1285. [DOI:10.3390/rs10081285]
11. Wang, L., & Qu, J. J. (2009). Satellite remote sensing applications for surface soil moisture monitoring: A review. Frontiers of Earth Science in China, 3, 237-247. [DOI:10.1007/s11707-009-0023-7]
12. Baghdadi, N., & Zribi, M. (2006). Evaluation of radar backscatter models IEM, OH and Dubois using experimental observations. International Journal of Remote Sensing, 27(18), 3831-3852. [DOI:10.1080/01431160600658123]
13. Schmugge, T. J., Kustas, W. P., Ritchie, J. C., Jackson, T. J., & Rango, A. (2002). Remote sensing in hydrology. Advances in water resources, 25(8-12), 1367-1385. [DOI:10.1016/S0309-1708(02)00065-9]
14. Hohenbrink, T. L., & Lischeid, G. (2015). Does textural heterogeneity matter? Quantifying transformation of hydrological signals in soils. Journal of Hydrology, 523, 725-738. [DOI:10.1016/j.jhydrol.2015.02.009]
15. Mukhlisin, M., Astuti, H. W., Wardihani, E. D., & Matlan, S. J. (2021). Techniques for ground-based soil moisture measurement: a detailed overview. Arabian Journal of Geosciences, 14, 1-34. [DOI:10.1007/s12517-021-08263-0]
16. Nwogwu, N. A., Okereke, N. A. A., Ohanyere, S. O., & Chikwue, M. I. (2018). A concise review of various soil moisture measurement techniques. In Proceedings of the 3rd South East Regional Conference, 27th-30th August.
20. کامبیز بهنیا، امیر محمد طباطبایی،(1391). کتاب مکانیک خاک، انتشارات دانشگاه تهران،تهران، ایران.
21. Othaman, N. N., Isa, M. N., Ismail, R. C., Ahmad, M. I., & Hui, C. K. (2020, January). Factors that affect soil electrical conductivity (EC) based system for smart farming application. In AIP conference proceedings (Vol. 2203, No. 1). AIP Publishing. [DOI:10.1063/1.5142147]
22. Gondek, M., Weindorf, D. C., Thiel, C., & Kleinheinz, G. (2020). Soluble salts in compost and their effects on soil and plants: A review. Compost Science & Utilization, 28(2), 59-75. [DOI:10.1080/1065657X.2020.1772906]
23. AASHTO T 265-81, (2015) Standard Method of Test for Laboratory Determination of Moisture Content of Soils.
24. ASTM (1990) Standard Method for Laboratory Determination of Water (Moisture) Content of Soil and Rock. Annual Book of ASTM Standards, D 2216-90 (Revision of 2216-63, 2216-80).
Amini J, Younesi Sinaki A. Designing and construction a ground-based soil moisture sensor in order to provide ground truth data for remote sensing images. JGST 2025; 14 (3) : 5 URL: http://jgst.issgeac.ir/article-1-1159-en.html