[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Browse::
Journal Info::
Guide for Authors::
Submit Manuscript::
Articles archive::
For Reviewers::
Contact us::
Site Facilities::
Reviewers::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 13, Issue 2 (12-2023) ::
JGST 2023, 13(2): 1-14 Back to browse issues page
Mapping of real Gossan in oxidant deposits using multi-source images and deep learning
Ahmad Rajabi , Mehdi Akhoondzadeh-Hanzaei *
Abstract:   (1509 Views)
Gossans are the easiest and fastest way to explore subsurface resources and actually represent mineral zones on the earth's surface. Gossans that have important mineral resources such as copper and gold are called true gusans. The aim of this study was to identify true Gossans in small exploration areas. In this paper, an algorithm for deep convolutional cane crusts was designed. In the proposed algorithm, first preprocessions such as geometric and spectral correction and restoration, division of satellite images into smaller images and amplification of training data are performed to prepare RGB data to enter the chip. The proposed CNN cane has a encoder-decoder structure that in the coding stage different and efficient features are extracted at different scales and in the decoding stage the generated features are combined to estimate the Gossan regions. Then, the desired network was implemented for the images of the studied exploratory area called "Tal Bargah" located in Darab city and the Gossan areas of the region were extracted. For field evaluation of the obtained results, the results of the network and its location on the copper orthodontic interpolation map of the region and review of the integrated lithological results and the real gusans of the region with statistical accuracy of sensitivity parameters: 0.957, F1 score: 0.457, rock detection accuracy 92% and average Copper grade above 4% was detected in these areas.
 
Article number: 1
Keywords: Gossan, Geochemistry, Copper deposit, Remote sensing, Deep learning
Full-Text [PDF 1752 kb]   (670 Downloads)    
Type of Study: Research | Subject: Photo&RS
Received: 2022/04/24
References
1. Amiri. A. H.. Ranjbar. H.. and Honarmand. M.. 2005. Application of remote sensing techniques in alluvial sampling design for exploration of placer deposits in the semi-arid areas. Map India Geomatics
2. Andrew. R. L. 1980. ‌Supergene alteration and gossan textures of base-metal ores in Southern Africa‌. Minerals Science and Engineering, 12(4):193-215.
3. Andrew. R. L. 2000. ‌Short Course in Evaluation of Gossans in Mineral Exploration‌. ADIMB, Brasilia, 57 pp.
4. Beiranvand Pour. and A.. Hashim. M.. 2012. The application of ASTER remote sensing data to porphyry copper and epithermal gold deposits. Ore Geology Reviews, 44 (2012) 1-9. [DOI:10.1016/j.oregeorev.2011.09.009]
5. Beiranvand Pour. A.. Hashim. M.. and Marghany. M.. 2013. Exploration of gold mineralization in a tropical region using Earth Observing-1 (EO1) and JERS-1 SAR data: a case study from Bau gold field, Sarawak, Malaysia. Arab J Geosci 7, 2393-2406. [DOI:10.1007/s12517-013-0969-3]
6. Bhadra. B. K.. Kumar. A.. Karunakar.G.. Meena. H.. Rehpade. B.. and Srinivasa Rao. S.. 2021. Integrated remote sensing and geophysical techniques for shallow base metal deposits (Zn, Pb, Cu) below the gossan zone at Kalabar, Western Aravalli Belt, India. Journal of Applied Geophysics, 191. 104365. [DOI:10.1016/j.jappgeo.2021.104365]
7. Blain. C. F.. and Andrew. R. L.. 1977. ‌Sulphide weathering and themineral evaluation of gossans in mineral exploration‌. Minerals Science and Engineering, 9(3):119-150.
8. Blanchard. R., 1968. ‌Interpretation of Leached Outcrops‌. Nevada Bureau of Mines and Geology, 66 pp.
9. Boyle. D. R. 1996. ‌Supergene base metals and precious metals‌. In: Eckstrand. O.R.. Sinclair. W.D.. and Thorpe. R.I. (Editors), Geology of Canadian mineral deposit types. Geologic Survey of Canada, pp. 92-108.
10. Essalhi. M.. Sizaret. S.. Barbanson. L.. Chen. Y.. Lagroix. F.. Demory. F.. Nieto. J.M.. Saez. R.. and Capitan. M.A.. 2011. ‌A case study of the internal structures of gossans and weathering processes in the Iberian Pyrite Belt using magnetic fabrics and paleomagnetic dating‌. Mineralium Deposita, 46(8):981-999. [DOI:10.1007/s00126-011-0361-8]
11. Gahlan. H.. and Ghrefat. H.. 2018. ‌Detection of Gossan Zones in Arid Regions Using Landsat 8 OLI Data: Implication for Mineral Exploration in the Eastern Arabian Shield, Saudi Arabia‌. Natural Resources Research, 27(1):109-124. [DOI:10.1007/s11053-017-9341-8]
12. Hannington. M. D.. Thompson. G.. Rona. P. A.. and Scott. S. D.. 1988. ‌Gold and native copper in supergene sulphides from the Mid-Atlantic Ridge‌. Nature, 333: 64-66. [DOI:10.1038/333064a0]
13. Ioffe. S.. and Szegedy. C.. ‌2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift,‌ arXiv preprint arXiv:1502.03167.
14. Karimpour. M. H.. Malekzadeh Shafaroudi.A.. Esfandiarpour. A.. and Mohammadnezhad. H.. 2012. ‌Neyshabour turquoise mine: the first Iron Oxide Cu-Au-U-LREE (IOCG) mineralized system in Iran‌. Journal of Economic Geology, 3(2), 193-216.
15. LeCun. Y.. Bengio. Y.. and Hinton. G.. ‌2015.Deeplearning,‌ Nature, vol. 521, pp. 436-444. [DOI:10.1038/nature14539]
16. Ozdemir. A.. and Sahinoglu. A.. 2018. Important of Gossans in Mineral Exploration: A Case Study in Northern Turkey. Int J Earth Sci Geophys, 4:019. [DOI:10.35840/2631-5033/1819]
17. Phung. S. L.. and Bouzerdoum. A.. 2009. MATLAB Library for Convolutional Neural Networks, Technical Report‖, Visual and Audio Signal Processing Lab, University of Wollongong.
18. Pirouei. M.. Kolo. K.. and Kalaitzidisc. S. P.. 2020. Hydrothermal listvenitization and associated mineralizations in Zagros Ophiolites: implications for mineral exploration in Iraqi Kurdistan. Journal of Geochemical Exploration, 208. 106405. [DOI:10.1016/j.gexplo.2019.106404]
19. Rajendran. S.. and Nasir. S.. 2017. ‌Characterization of ASTER spectral bands for mapping of alteration zones of volcanogenic massive sulphide deposits‌. Ore Geology Reviews, 88:317-335. [DOI:10.1016/j.oregeorev.2017.04.016]
20. Scott. K. M.. Ashley. P.M.. and Lawie. D. C.. 2001. ‌The geochemistry, mineralogy and maturity of gossans derived from volcanogenic Zn-Pb-Cu deposits of the eastern Lachlan Fold Belt, NSW, Australia‌. Journal of Geochemical exploration, 72(3):169-191. [DOI:10.1016/S0375-6742(01)00159-5]
21. Sherlock. R. L.. and Barrett. T. J.. 2004. ‌Geology and volcanic stratigraphy of the Canatuan and Malusok volcanogenic massive sulfide deposits, southwestern Mindanao, Philippines. Mineralium Deposita, 39(1):1-20. [DOI:10.1007/s00126-003-0350-7]
22. Taylor. G. F.. 1987. ‌Gossan and Ironstone Evaluation in Mineral Exploration‌. Brazilian Geochemistry Society, Rio de Janeiro, 140 pp.
23. Törmänen. T. O.. and Koski. R. A.. 2005. ‌Gold enrichment and the Bi-Au association in pyrrhotite-rich massive sulfide deposits, Escanaba Trough, southern Gorda Ridge‌. Economic Geology, 100(6):1135- 1150. [DOI:10.2113/gsecongeo.100.6.1135]
24. Wager. S.. Wang. S.. and Liang. P. S.. ‌2013. Dropout training as adaptive regularization. Advances in neural information processing systems, pp. 351-359.
25. Wilhelm. E. K.. and Kosakevitch. A.. 1979. ‌Utilisation des chapeaux de fer comme guide de prospection‌. Geólogie des gites minéraux, 2(3):109-140.
26. Wilmshurst. J. R.. and Fisher. N. I.. 1983. ‌Classification scheme of gossans‌. In: Smith. R.E. (Editor), Geochemical Exploration in Deeply Weathered Terrain. CSIRO Division of Mineralogy, Floreat Park, Western Australia, pp. 104-106.
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rajabi A, Akhoondzadeh-Hanzaei M. Mapping of real Gossan in oxidant deposits using multi-source images and deep learning. JGST 2023; 13 (2) : 1
URL: http://jgst.issgeac.ir/article-1-1087-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 13, Issue 2 (12-2023) Back to browse issues page
نشریه علمی علوم و فنون نقشه برداری Journal of Geomatics Science and Technology