[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Browse::
Journal Info::
Guide for Authors::
Submit Manuscript::
Articles archive::
For Reviewers::
Contact us::
Site Facilities::
Reviewers::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 8, Issue 2 (12-2018) ::
JGST 2018, 8(2): 69-82 Back to browse issues page
Feature Selection Based on Combination of Minimal Redundancy-Maximal Relevance and Genetic Algorithm for Alassification of Fused Optical and SAR Images
M. Teimouri * , M. Mokhtarzade , Y. Amerian
Abstract:   (3864 Views)
The use of multi-source data, especially the fusion of optical and radar images, is a promising way for improving the level of interpretability of the remote sensing data which leads to a significant performance improvement. In most practical situations, there are two important challenges in the image classification methods: feature space generation and choosing the appropriate method for feature selection. This paper aims at reducing the time required for achieving the optimal features. To realize this objective, a new feature selection method is suggested based on the fusion of optical and radar images. In the proposed method, Minimal Redundancy-Maximal Relevance (MRMR) and Genetic Algorithms (GA) are combined and the optimal features are seeked to improve the classification accuracy based on the SAR and optic data. In doing so, at first the SAR data and the optical image are fused together using wavelet procedure. Afterward, several features are extracted from the fused image. In the next stage, the feature selection step is carried out based on the GA method and the combination of the MRMR and GA which is termed MRMR-GA algorithm. Lastly, the fused image is classified using the support vector machine classifier. For the performance analysis of the proposed approach, the TerraSAR and the Ikonos images which are acquired over Shiraz in Iran, are employed. The suggested method leads to the overall accuracy of 97.25 percent, which indicates the accuracy of the MRMR-GA method is 3% higher than that of the SVM classification with inclusion of the entire feature set. Moreover, the overall accuracy of the proposed approach and GA is approximately equal, while the performance of the MRMR-GA method is approximately 2.5 times faster than the GA. Therefore, the obtained results confirm the efficiency of the proposed method in feature selection for the purpose of the image classification.

 
Keywords: Image Classification, Fusion, Feature Selection, MRMR-GA
Full-Text [PDF 1159 kb]   (3482 Downloads)    
Type of Study: Research | Subject: Photo&RS
Received: 2017/09/27
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Teimouri M, Mokhtarzade M, Amerian Y. Feature Selection Based on Combination of Minimal Redundancy-Maximal Relevance and Genetic Algorithm for Alassification of Fused Optical and SAR Images. JGST 2018; 8 (2) :69-82
URL: http://jgst.issgeac.ir/article-1-691-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 8, Issue 2 (12-2018) Back to browse issues page
نشریه علمی علوم و فنون نقشه برداری Journal of Geomatics Science and Technology