[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Browse::
Journal Info::
Guide for Authors::
Submit Manuscript::
Articles archive::
For Reviewers::
Contact us::
Site Facilities::
Reviewers::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 14, Issue 2 (12-2024) ::
JGST 2024, 14(2): 119-133 Back to browse issues page
Land Cover and Land Use Extraction Based on Deep Learning Methods Using Satellite Images
Pooya Heidari * , Asghar Milan , Alireza Gharagozlou
Abstract:   (278 Views)
Information on land use and cover needs to be gathered due to the growing urban population, city growth, and urbanization. Applications for this data include environmental protection, urban planning, planning for urban infrastructure, and strategic planning to guarantee the sustainable growth of urban areas. The primary source of data on land cover and land use at the moment is remote sensing imagery. Information about land cover and land use can be retrieved from remote sensing images using image classification techniques. In terms of classification accuracy, deep learning techniques recently outperformed other methods for classifying land use and cover. Convolutional neural networks (CNNs), which are quite popular in this field, are one of the significant deep learning classification architectures frequently used in land cover and land use classification. Recently, the convolutional neural network technique known as ResNet has been applied to remote sensing applications, particularly for the classification of land use and cover. ResNet models are an effective choice for classifying land cover and land use because they can handle the vanishing gradient issue. The primary objective of this study is to assess the performance of the Glorot Uniform and Random Uniform weight initializers in the ResNet50, ResNet101, and ResNet152 architectures for extracting the land cover and land use of the EuroSat dataset. The weighted F1 score, IoU indexes, overall accuracy, and kappa coefficient were used to evaluate the accuracy of the results. ResNet101's corresponding values for these indexes were, in turn, 0.8869, 0.7951, 0.8871, and 0.8743. These results indicate that, in terms of classification accuracy, ResNet101 has outperformed the ResNet50 and ResNet152 methods.
Article number: 8
Keywords: Land cover and land use, Sustainable development, Deep learning, Convolutional neural network, Kappa coefficient
Full-Text [PDF 1304 kb]   (175 Downloads)    
Type of Study: Research | Subject: Photo&RS
Received: 2023/12/20
References
1. Alexander, C. (2020). Normalized difference spectral indices and urban land cover as indicators of land surface temperature (LST). International Journal of Applied Earth Observation and Geoinformation, 86, 102013. [DOI:10.1016/j.jag.2019.102013]
2. Reis, S. (2008). Analyzing land use/land cover changes using remote sensing and GIS in Rize, North-East Turkey. Sensors, 8(10), 6188-6202. [DOI:10.3390/s8106188]
3. Lv, Q., Dou, Y., Niu, X., Xu, J., Xu, J., & Xia, F. (2015). Urban land use and land cover classification using remotely sensed SAR data through deep belief networks. Journal of Sensors, 2015. [DOI:10.1155/2015/538063]
4. Marschner, F. J., & Anderson, J. R. (1967). Major land uses in the United States. US Geological Survey.
5. Jozdani, S. E., Johnson, B. A., & Chen, D. (2019). Comparing deep neural networks, ensemble classifiers, and support vector machine algorithms for object-based urban land use/land cover classification. Remote Sensing, 11(14), 1713. [DOI:10.3390/rs11141713]
6. Zhang, X., Han, L., Han, L., & Zhu, L. (2020). How well do deep learning-based methods for land cover classification and object detection perform on high resolution remote sensing imagery?. Remote Sensing, 12(3), 417. [DOI:10.3390/rs12030417]
7. Lee, S. H., Han, K. J., Lee, K., Lee, K. J., Oh, K. Y., & Lee, M. J. (2020). Classification of landscape affected by deforestation using high-resolution remote sensing data and deep-learning techniques. Remote Sensing, 12(20), 3372. [DOI:10.3390/rs12203372]
8. Li, W., Fu, H., Yu, L., Gong, P., Feng, D., Li, C., & Clinton, N. (2016). Stacked Autoencoder-based deep learning for remote-sensing image classification: a case study of African land-cover mapping. International journal of remote sensing, 37(23), 5632-5646. [DOI:10.1080/01431161.2016.1246775]
9. Bhatti, U. A., Yu, Z., Yuan, L., Zeeshan, Z., Nawaz, S. A., Bhatti, M., ... & Wen, L. (2020). Geometric algebra applications in geospatial artificial intelligence and remote sensing image processing. IEEE Access, 8, 155783-155796. [DOI:10.1109/ACCESS.2020.3018544]
10. Ma, L., Liu, Y., Zhang, X., Ye, Y., Yin, G., & Johnson, B. A. (2019). Deep learning in remote sensing applications: A meta-analysis and review. ISPRS journal of photogrammetry and remote sensing, 152, 166-177. [DOI:10.1016/j.isprsjprs.2019.04.015]
11. Yuan, Q., Shen, H., Li, T., Li, Z., Li, S., Jiang, Y., ... & Zhang, L. (2020). Deep learning in environmental remote sensing: Achievements and challenges. Remote Sensing of Environment, 241, 111716. [DOI:10.1016/j.rse.2020.111716]
12. Huang, B., Zhao, B., & Song, Y. (2018). Urban land-use mapping using a deep convolutional neural network with high spatial resolution multispectral remote sensing imagery. Remote Sensing of Environment, 214, 73-86. [DOI:10.1016/j.rse.2018.04.050]
13. Digra, M., Dhir, R., & Sharma, N. (2022). Land use land cover classification of remote sensing images based on the deep learning approaches: a statistical analysis and review. Arabian Journal of Geosciences, 15(10), 1003. [DOI:10.1007/s12517-022-10246-8]
14. Tong, X. Y., Xia, G. S., Lu, Q., Shen, H., Li, S., You, S., & Zhang, L. (2020). Land-cover classification with high-resolution remote sensing images using transferable deep models. Remote Sensing of Environment, 237, 111322. [DOI:10.1016/j.rse.2019.111322]
15. Zhang, P., Ke, Y., Zhang, Z., Wang, M., Li, P., & Zhang, S. (2018). Urban land use and land cover classification using novel deep learning models based on high spatial resolution satellite imagery. Sensors, 18(11), 3717. [DOI:10.3390/s18113717]
16. Zhao, J., Wang, L., Yang, H., Wu, P., Wang, B., Pan, C., & Wu, Y. (2022). A land cover classification method for high-resolution remote sensing images based on NDVI deep learning fusion network. Remote Sensing, 14(21), 5455. [DOI:10.3390/rs14215455]
17. Zhang, L., Zhang, L., & Du, B. (2016). Deep learning for remote sensing data: A technical tutorial on the state of the art. IEEE Geoscience and remote sensing magazine, 4(2), 22-40. [DOI:10.1109/MGRS.2016.2540798]
18. Cheng, X., He, X., Qiao, M., Li, P., Hu, S., Chang, P., & Tian, Z. (2022). Enhanced contextual representation with deep neural networks for land cover classification based on remote sensing images. International Journal of Applied Earth Observation and Geoinformation, 107, 102706. [DOI:10.1016/j.jag.2022.102706]
19. Kavhu, B., Mashimbye, Z. E., & Luvuno, L. (2021). Climate-based regionalization and inclusion of spectral indices for enhancing transboundary land-use/cover classification using deep learning and machine learning. Remote Sensing, 13(24), 5054. [DOI:10.3390/rs13245054]
20. Storie, C. D., & Henry, C. J. (2018, July). Deep learning neural networks for land use land cover mapping. In IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium (pp. 3445-3448). IEEE. [DOI:10.1109/IGARSS.2018.8518619]
21. Luus, F. P., Salmon, B. P., Van den Bergh, F., & Maharaj, B. T. J. (2015). Multiview deep learning for land-use classification. IEEE Geoscience and Remote Sensing Letters, 12(12), 2448-2452. [DOI:10.1109/LGRS.2015.2483680]
22. Campos-Taberner, M., García-Haro, F. J., Martínez, B., Izquierdo-Verdiguier, E., Atzberger, C., Camps-Valls, G., & Gilabert, M. A. (2020). Understanding deep learning in land use classification based on Sentinel-2 time series. Scientific reports, 10(1), 17188. [DOI:10.1038/s41598-020-74215-5]
23. Zhu, M., He, Y., & He, Q. (2019). A review of researches on deep learning in remote sensing application. International Journal of Geosciences, 10(1), 1-11. [DOI:10.4236/ijg.2019.101001]
24. Naushad, R., Kaur, T., & Ghaderpour, E. (2021). Deep transfer learning for land use and land cover classification: A comparative study. Sensors, 21(23), 8083. [DOI:10.3390/s21238083]
25. Alem, A., & Kumar, S. (2020, June). Deep learning methods for land cover and land use classification in remote sensing: A review. In 2020 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions)(ICRITO) (pp. 903-908). IEEE. [DOI:10.1109/ICRITO48877.2020.9197824]
26. Aspri, M., Tsagkatakis, G., & Tsakalides, P. (2020). Distributed training and inference of deep learning models for multi-modal land cover classification. Remote Sensing, 12(17), 2670. [DOI:10.3390/rs12172670]
27. Jin, B., Ye, P., Zhang, X., Song, W., & Li, S. (2019). Object-oriented method combined with deep convolutional neural networks for land-use-type classification of remote sensing images. Journal of the Indian Society of Remote Sensing, 47, 951-965. [DOI:10.1007/s12524-019-00945-3]
28. Zang, N., Cao, Y., Wang, Y., Huang, B., Zhang, L., & Mathiopoulos, P. T. (2021). Land-use mapping for high-spatial resolution remote sensing image via deep learning: A review. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 5372-5391. [DOI:10.1109/JSTARS.2021.3078631]
29. Mahdianpari, M., Salehi, B., Rezaee, M., Mohammadimanesh, F., & Zhang, Y. (2018). Very deep convolutional neural networks for complex land cover mapping using multispectral remote sensing imagery. Remote Sensing, 10(7), 1119. [DOI:10.3390/rs10071119]
30. Fukushima, K. (1988). Neocognitron: A hierarchical neural network capable of visual pattern recognition. Neural networks, 1(2), 119-130. [DOI:10.1016/0893-6080(88)90014-7]
31. LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324. [DOI:10.1109/5.726791]
32. Alom, M. Z., Taha, T. M., Yakopcic, C., Westberg, S., Sidike, P., Nasrin, M. S., ... & Asari, V. K. (2018). The history began from alexnet: A comprehensive survey on deep learning approaches. arXiv preprint arXiv:1803.01164.
33. Erhan, D., Courville, A., Bengio, Y., & Vincent, P. (2010, March). Why does unsupervised pre-training help deep learning?. In Proceedings of the thirteenth international conference on artificial intelligence and statistics (pp. 201-208). JMLR Workshop and Conference Proceedings.
34. Vasavi, S., Somagani, H. S., & Sai, Y. (2023). Classification of buildings from VHR satellite images using ensemble of U-Net and ResNet. The Egyptian Journal of Remote Sensing and Space Sciences, 26(4), 937-953. [DOI:10.1016/j.ejrs.2023.11.008]
35. Borawar, L., & Kaur, R. (2023, March). ResNet: Solving vanishing gradient in deep networks. In Proceedings of International Conference on Recent Trends in Computing: ICRTC 2022 (pp. 235-247). Singapore: Springer Nature Singapore. [DOI:10.1007/978-981-19-8825-7_21]
36. Harini, M., Selvavarshini, S., Narmatha, P., Anitha, V., Selvi, S. K., & Manimaran, V. (2024, January). Resnet-50 Integrated with Attention Mechanism for Remote Sensing Classification. In International Conference on Advances in Distributed Computing and Machine Learning (pp. 255-265). Singapore: Springer Nature Singapore. [DOI:10.1007/978-981-97-1841-2_19]
37. Rohith, G., & Kumar, L. S. (2020, June). Remote sensing signature classification of agriculture detection using deep convolution network models. In International Conference on Machine Learning, Image Processing, Network Security and Data Sciences (pp. 343-355). Singapore: Springer Singapore. [DOI:10.1007/978-981-15-6315-7_28]
38. Chen, G., Zhang, X., Tan, X., Cheng, Y., Dai, F., Zhu, K., ... & Wang, Q. (2018). Training small networks for scene classification of remote sensing images via knowledge distillation. Remote Sensing, 10(5), 719. [DOI:10.3390/rs10050719]
39. Chen, F., & Tsou, J. Y. (2022). Assessing the effects of convolutional neural network architectural factors on model performance for remote sensing image classification: An in-depth investigation. International Journal of Applied Earth Observation and Geoinformation, 112, 102865. [DOI:10.1016/j.jag.2022.102865]
40. Dimitrovski, I., Kitanovski, I., Kocev, D., & Simidjievski, N. (2023). Current trends in deep learning for Earth Observation: An open-source benchmark arena for image classification. ISPRS Journal of Photogrammetry and Remote Sensing, 197, 18-35. [DOI:10.1016/j.isprsjprs.2023.01.014]
41. Yamashkina, E. O., Yamashkin, S. A., Platonova, O. V., & Kovalenko, S. M. (2022). Development of a neural network model for spatial data analysis. Rossiiskii Tekhnologicheskii Zhurnal [Russian Technological Journal], (10), 28-37. [DOI:10.32362/2500-316X-2022-10-5-28-37]
42. Mahamunkar, G. S., & Netak, L. D. (2021, December). Comparison of various deep CNN models for land use and land cover classification. In International Conference on Intelligent Human Computer Interaction (pp. 499-510). Cham: Springer International Publishing. [DOI:10.1007/978-3-030-98404-5_46]
43. Zhang, Z., Mi, X., Yang, J., Wei, X., Liu, Y., Yan, J., ... & Yu, T. (2023). Remote sensing image scene classification in hybrid classical-quantum transferring CNN with small samples. Sensors, 23(18), 8010. [DOI:10.3390/s23188010]
44. Cheng, G., Xie, X., Han, J., Guo, L., & Xia, G. S. (2020). Remote sensing image scene classification meets deep learning: Challenges, methods, benchmarks, and opportunities. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 3735-3756. [DOI:10.1109/JSTARS.2020.3005403]
45. Rousset, G., Despinoy, M., Schindler, K., & Mangeas, M. (2021). Assessment of deep learning techniques for land use land cover classification in southern new Caledonia. Remote Sensing, 13(12), 2257. [DOI:10.3390/rs13122257]
46. Helber, P., Bischke, B., Dengel, A., & Borth, D. (2019). Eurosat: A novel dataset and deep learning benchmark for land use and land cover classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(7), 2217-2226. [DOI:10.1109/JSTARS.2019.2918242]
47. Neumann, M., Pinto, A. S., Zhai, X., & Houlsby, N. (2019). In-domain representation learning for remote sensing. arXiv preprint arXiv:1911.06721
48. Bhosle, K., & Musande, V. (2019). Evaluation of deep learning CNN model for land use land cover classification and crop identification using hyperspectral remote sensing images. Journal of the Indian Society of Remote Sensing, 47(11), 1949-1958. [DOI:10.1007/s12524-019-01041-2]
49. Li, W., Liu, H., Wang, Y., Li, Z., Jia, Y., & Gui, G. (2019). Deep learning-based classification methods for remote sensing images in urban built-up areas. Ieee Access, 7, 36274-36284. [DOI:10.1109/ACCESS.2019.2903127]
50. Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., & Sánchez, C. I. (2017). A survey on deep learning in medical image analysis. Medical image analysis, 42, 60-88. [DOI:10.1016/j.media.2017.07.005]
51. Stoimchev, M., Kocev, D., & Džeroski, S. (2023). Deep Network Architectures as Feature Extractors for Multi-Label Classification of Remote Sensing Images. Remote Sensing, 15(2), 538. [DOI:10.3390/rs15020538]
52. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778). [DOI:10.1109/CVPR.2016.90]
53. Fahmi, H. (2022). Patch based Classification using ResNet for Land Cover changes detection of Batu City. MATICS: Jurnal Ilmu Komputer dan Teknologi Informasi (Journal of Computer Science and Information Technology), 14(2), 64-69. [DOI:10.18860/mat.v14i2.20946]
54. Wang, L., Wang, J., Liu, Z., Zhu, J., & Qin, F. (2022). Evaluation of a deep-learning model for multispectral remote sensing of land use and crop classification. The Crop Journal, 10(5), 1435-1451. [DOI:10.1016/j.cj.2022.01.009]
55. Hosseiny, B., Abdi, A. M., & Jamali, S. (2022). Urban land use and land cover classification with interpretable machine learning-A case study using Sentinel-2 and auxiliary data. Remote Sensing Applications: Society and Environment, 28, 100843. [DOI:10.1016/j.rsase.2022.100843]
56. Shehab, L. H., Fahmy, O. M., Gasser, S. M., & El-Mahallawy, M. S. (2021). An efficient brain tumor image segmentation based on deep residual networks (ResNets). Journal of King Saud University-Engineering Sciences, 33(6), 404-412. [DOI:10.1016/j.jksues.2020.06.001]
57. Dastour, H., & Hassan, Q. K. (2023). A Comparison of Deep Transfer Learning Methods for Land Use and Land Cover Classification. Sustainability, 15(10), 7854. [DOI:10.3390/su15107854]
58. Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
59. Macarringue, L. S., Bolfe, É. L., & Pereira, P. R. M. (2022). Developments in land use and land cover classification techniques in remote sensing: A review. Journal of Geographic Information System, 14(1), 1-28. [DOI:10.4236/jgis.2022.141001]
60. Fan, F., Wang, Y., & Wang, Z. (2008). Temporal and spatial change detecting (1998-2003) and predicting of land use and land cover in Core corridor of Pearl River Delta (China) by using TM and ETM+ images. Environmental monitoring and assessment, 137, 127-147. [DOI:10.1007/s10661-007-9734-y]
61. Congalton, R. G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote sensing of environment, 37(1), 35-46. [DOI:10.1016/0034-4257(91)90048-B]
62. Foody, G. M. (2002). Status of land cover classification accuracy assessment. Remote sensing of environment, 80(1), 185-201. [DOI:10.1016/S0034-4257(01)00295-4]
63. Rwanga, S. S., & Ndambuki, J. M. (2017). Accuracy assessment of land use/land cover classification using remote sensing and GIS. International Journal of Geosciences, 8(04), 611. [DOI:10.4236/ijg.2017.84033]
64. Tilahun, A., & Teferie, B. (2015). Accuracy assessment of land use land cover classification using Google Earth. American Journal of Environmental Protection, 4(4), 193-198. [DOI:10.11648/j.ajep.20150404.14]
65. Liu, Y., Fan, B., Wang, L., Bai, J., Xiang, S., & Pan, C. (2018). Semantic labeling in very high resolution images via a self-cascaded convolutional neural network. ISPRS journal of photogrammetry and remote sensing, 145, 78-95. [DOI:10.1016/j.isprsjprs.2017.12.007]
66. Temenos, A., Temenos, N., Kaselimi, M., Doulamis, A., & Doulamis, N. (2023). Interpretable deep learning framework for land use and land cover classification in remote sensing using SHAP. IEEE Geoscience and Remote Sensing Letters, 20, 1-5. [DOI:10.1109/LGRS.2023.3251652]
67. Huang, X., Yang, D., He, Y., Nelson, P., Low, R., McBride, S., ... & Guarraia, M. (2023). Land cover mapping via crowdsourced multi-directional views: The more directional views, the better. International Journal of Applied Earth Observation and Geoinformation, 122, 103382. [DOI:10.1016/j.jag.2023.103382]
68. Cherif, E., Hell, M., & Brandmeier, M. (2022). DeepForest: Novel deep learning models for land use and land cover classification using multi-temporal and-modal sentinel data of the amazon basin. remote sensing, 14(19), 5000. [DOI:10.3390/rs14195000]
69. Abdu, H. A. (2019). Classification accuracy and trend assessments of land cover-land use changes from principal components of land satellite images. International Journal of Remote Sensing, 40(4), 1275-1300. [DOI:10.1080/01431161.2018.1524587]
70. Hay, A. M. (1988). The derivation of global estimates from a confusion matrix. International Journal of Remote Sensing, 9(8), 1395-1398. [DOI:10.1080/01431168808954945]
71. Abdelkareem, O. E. A., Elamin, H. M. A., Eltahir, M. E. S., Adam, H. E., Elhaja, M. E., Rahamtalla, A. M., ... & Elmar, C. (2018). Accuracy assessment of land use land cover in Umabdalla natural reserved forest, South Kordofan, Sudan. International journal of agricultural and environmental sciences, 3(1), 5-9.
72. Narkhede, M. V., Bartakke, P. P., & Sutaone, M. S. (2022). A review on weight initialization strategies for neural networks. Artificial intelligence review, 55(1), 291-322. [DOI:10.1007/s10462-021-10033-z]
73. Desai, C. (2024). Impact of Weight Initialization Techniques on Neural Network Efficiency and Performance: A Case Study with MNIST Dataset. International Journal Of Engineering And Computer Science, 13(04).
74. Li, H., Krček, M., & Perin, G. (2020). A comparison of weight initializers in deep learning-based side-channel analysis. In Applied Cryptography and Network Security Workshops: ACNS 2020 Satellite Workshops, AIBlock, AIHWS, AIoTS, Cloud S&P, SCI, SecMT, and SiMLA, Rome, Italy, October 19-22, 2020, Proceedings 18 (pp. 126-143). Springer International Publishing. [DOI:10.1007/978-3-030-61638-0_8]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Heidari P, Milan A, Gharagozlou A. Land Cover and Land Use Extraction Based on Deep Learning Methods Using Satellite Images. JGST 2024; 14 (2) : 8
URL: http://jgst.issgeac.ir/article-1-1169-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 14, Issue 2 (12-2024) Back to browse issues page
نشریه علمی علوم و فنون نقشه برداری Journal of Geomatics Science and Technology