[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Browse::
Journal Info::
Guide for Authors::
Submit Manuscript::
Articles archive::
For Reviewers::
Contact us::
Site Facilities::
Reviewers::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 12, Issue 3 (3-2023) ::
JGST 2023, 12(3): 63-73 Back to browse issues page
investigatin the accuracy of iPhone LiDAR in preparing point clouds of tree trunks (Case study: Middle Zagros - Oak forests of Lorestan province)
Elham Karimzadeh jafari , Javad Soosani * , Masoud Varshosaz , Hamed Naghavi
Abstract:   (1249 Views)
Zagros forests are one of the important and strategic areas of the country. Forest inventories in areas like Zagros is expensive and time-consuming due to the difficult access and low density of trees. Laser scanning methods to prepare point clouds and produce maps provide valuable and significant information in forest management. With the release of the LiDAR short-range light detection sensor in 2020 by Apple, it became possible to use alternative scanning methods. In the present study, in order to check the accuracy of iPhone LiDAR in preparing point clouds of tree trunks, 37 Iranian oak trees were selected and specific longitudinal and transverse distances were marked on their trunks. The high accuracy of the point clouds for these distances resulted in a high correlation between the generated point clouds and the real distances. The RMSE% was obtained for longitudinal distances of 1.33 cm and for transverse distances of 2.2 cm respectively, which proves the high accuracy of the mentioned technology and its high capability in extracting quantitative components of tree trunks.
Article number: 5
Keywords: Zagros forests, scan, smartphone, validation, Apple, Pearson correlation
Full-Text [PDF 838 kb]   (904 Downloads)    
Type of Study: Research | Subject: Photo&RS
Received: 2022/06/21
References
1. Jafarzadeh, A.A., Mahdavi, A., Fallah Shamsi, R. and Yousefpour, R. (2020). Economic evaluation of some of the most important ecosystem services in Zagros forests. Environmental Sciences. Vol.18/ No.1. PP.137-150, (in Persian). [DOI:10.29252/envs.18.1.137]
2. Karamshahi, A., Karami, A. and Mohammadi, G. (2016). Offering structure quantitative spatial analysis model of Persian Oak species in two types of high forest and coppice of West Oak Forests (Case study: Karzan forests, Ilam Province). Forest Research and Development, Vol. 2, No. 3. PP.205-218, (in Persian).
3. Erfanifard, Y., Chenari, A., Dehghani, M. and Amiraslani, F. (2019). Effect of spatial resolution of UAV aerial images on height estimation of wild pistachio (Pistacia atlantica Desf.) trees. Iranian Journal of Forest and Poplar Research Vol. 27 No. 2. PP.169-181, (in Persian).
4. Pourahmad, M., Oladi, J. and Fallah, A. (2018). " Detection of Tree Species in Mixed Broad-Leaved Stands of Caspian Forests Using UAV Images (Case study: Darabkola Forest) ." Ecology of Iranian Forests Vol. 6, No. 11. PP. 61-75, (in Persian). [DOI:10.29252/ifej.6.11.61]
5. Tomaštík, J., Salonˇ, S., Tunák, D., Chudy', F. and Kardoš, M. (2017). "Tango in forests - An initial experience of the use of the new Google technology in connection with forest inventory tasks." Comput. Electron. Agric. vol. 141, pp. 109-117, 2017, doi: 10.1016/j.compag.2017.07.015. [DOI:10.1016/j.compag.2017.07.015]
6. Mokroˇs, M., Mikita, T., Singh, A., Tomaˇstík, J., Chud'a, J., Wę˙ zyk, P., Kuˇzelka, K., Surový, P., Klim'anek, M. Zięba-Kulawik, K., Bobrowski, R. and Liang, X. (2021). "Novel low-cost mobile mapping systems for forest inventories as terrestrial laser scanning alternatives." International Journal of Applied Earth Observations and Geoinformation. Vol. 104. https://doi.org/10.1016/j.jag.2021.102512 [DOI:10.1016/j.jag.2021.102512.]
7. Fabrika, M., Valent, P. and Scheer, ˇL. (2018). "Thinning trainer based on forest-growth model, virtual reality and computer-aided virtual environment." Environ Modelling and software. Vol.100, pp.11-23. https://doi.org/10.1016/j.envsoft.2017.11.015 [DOI:10.1016/j.envsoft.2017.11.015.]
8. Hyyppa, E., Muhojoki, J., Yu, X., Kukko., A., Kaartinen, H. and Hyyppa, j. (2021). "Efficient coarse registration method using translation- and rotation-invariant local descriptors towards fully automated forest inventory." ISPRS Open Journal of Photogrammetry and Remote Sensing. vol. 2 https://doi.org/10.1016/j.ophoto.2021.100007 [DOI:10.1016/j.ophoto.2021.100007.]
9. Aicardi, I., Dabove, P., Lingua, A.M. and Piras, M. (2016). "Integration between TLS and UAV photogrammetry techniques for forestry applications." IForest, Biogeosciences and Forestry. Vol.10, no.1. PP.41-47. Doi: 10.3832/ifor1780-009. [DOI:10.3832/ifor1780-009]
10. Maltamo, M., Næsset, E. and Vauhkonen, J. (Eds). (2014). "Forestry Applications of Airborne Laser Scanning; Managing Forest Ecosystems." Springer Netherlands, Dordrecht, The Netherlands, 27,ISBN 978-94-017-8662-1. [DOI:10.1007/978-94-017-8663-8]
11. Krause, S., Sanders, T.G.M., Mund, J.P. and Greve, K. (2019). "UAV-Based Photogrammetric Tree Height Measurement for Intensive Forest Monitoring".Remote Sensing. Vol.11, no.7. 758; doi:10.3390/rs11070758. [DOI:10.3390/rs11070758]
12. Gollob, C., Ritter, T., Kraßnitzer, R., Tockner., A. and Nothdurft., A. (2021). "Measurement of Forest Inventory Parameters with Apple iPad Pro and Integrated LiDAR Technology." Remote Sensing. Vol.13, no. 16. 3129. https://doi.org/10.3390/rs13163129 [DOI:10.3390/rs13163129.]
13. Liang, X., Kukko, A., Kaartinen, H., Hyyppä, J., Yu, X., Jaakkola, A. and Wang, Y. (2014). "Possibilities of a Personal Laser Scanning System for Forest Mapping and Ecosystem Services." Sensors. Vol.14, no,1. PP. 1228-1248. https://doi.org/10.3390/s140101228 [DOI:10.3390/s140101228.]
14. Maltamo, M.,Bollandsas, O.M., Naesset, E., Gobakken, T. and Packalen, P. (2011). "Different plot selection strategies for field training data in ALS-assisted forest inventory." Forestry. Vol. 84. PP. 23-31. [DOI:10.1093/forestry/cpq039]
15. Fan, Y., Feng, Z., Mannan, A., Ullah Khan, A., Shen, C. and Saeed, S. (2018). "Estimating Tree Position, Diameter at Breast Height and Tree Height in Real-Time Using a Mobile Phone with RGB-D SLAM." Remote Sensing. Vol.10, no.11. 1845. https://doi.org/10.3390/rs10111845 [DOI:10.3390/rs10111845.]
16. Balenovi'c, I., Liang, X., Jurjevi'c, L., Hyyppä, J., Seletkovi'c, A. and Kukko, A. (2020). "Hand-held personal laser scanning-current status and perspectives for forest inventory application." Croat. J. For. Eng, 2020, vol.42, PP.165-183. [DOI:10.5552/crojfe.2021.858]
17. Gollob, C., Ritter, T.,Wassermann, C. and Nothdurft, A. (2019). "Influence of Scanner Position and Plot Size on the Accuracy of Tree Detection and Diameter Estimation Using Terrestrial Laser Scanning on Forest Inventory Plots." Remote Sensing. Vol. 11, no. 13.1602; https://doi.org/10.3390/rs11131602 [DOI:10.3390/rs11131602.]
18. Vogt, M., Rips, A. and Emmelmann, C. (2021). "Comparison of I pad 's LiDAR and TrueDepth capabilities with an Industrial 3D Scanning solutions."Technologies. vol.9, no. 25. https://doi.org/10.3390/technologies9020025 [DOI:10.3390/technologies9020025.]
19. Foix, S., Alenya, G. and Torras C. (2011). "Lock-in time-of-flight (ToF) cameras: A survey." IEEE Sensors Journal. Vol. 11, no.9. PP. 1917-1926. [DOI:10.1109/JSEN.2010.2101060]
20. Aijaz, M .and Sharma, A. (2016). Google Project Tango. In Proceedings of the 2016 International Conference on Advanced Computing, Moradabad, India, 22-23 January 2016.
21. Schuon, S.,Theobalt, C., Davis, J. and Thrun, S. (2008). "High-quality scanning using time-of-flight depth superresolution." In Proceedings of the 2008 IEEE Computer Society Conference on Computer Vision and Pattern RecognitionWorkshops, Anchorage, AK, USA, 23-28 June 2008 [DOI:10.1109/CVPRW.2008.4563171]
22. IEEE: Piscataway, NJ, USA, 2008. ISBN 9781424423392.
23. Carey, N., Nagpal, R. and Werfel, J. (2017). "Fast, accurate, small-scale 3D scene capture using a low-cost depth sensor." IEEE Winter Conf. Appl. Comput. Vis. 2017, 1268-1276. [DOI:10.1109/WACV.2017.146]
24. Alfaro-Santafé, J., Gómez-Bernal, A., Lanuza-Cerzócimo, C., Alfaro-Santafé, J.V., Pérez-Morcillo, A. and Almenar-Arasanz, A.J. (2020). "Three-axis measurements with a novel system for 3D plantar foot scanning: iPhone X." Footwear Science. Vol.12, no. 2. PP. 123-131. [DOI:10.1080/19424280.2020.1734867]
25. Çakir, G.Y., Post, C.J., Mikhailova, E.A. and Schlautman, M.A. (2021). "3D LiDAR Scanning of Urban Forest Structure Using a Consumer Tablet. "Urban Science. Vo. 5, no.4 . https://doi.org/10.3390/urbansci5040088 [DOI:10.3390/urbansci5040088.]
26. Wang, Y.; Hyyppä, J.; Liang, X.; Kaartinen, H.; Yu, X.; Lindberg, E.; Holmgren, J.; Qin, Y.; Mallet, C. and Ferraz, A. (2016). "International benchmarking of the individual tree detection methods for modeling 3-D canopy structure for silviculture and forest ecology using airborne laser scanning. "IEEE Transections on Geoscience and Remote Sens. Vol.54, no. 9. PP 5011-5027. [DOI:10.1109/TGRS.2016.2543225]
27. Luetzenburg, G., Kroon., A. and Bjørk., A.A. (2021). "Evaluation of the Apple iPhone 12 Pro LiDAR for an Application in Geosciences. "Scientific Reports. Vol.11. https://doi.org/10.1038/s41598-021-01763-9 [DOI:10.1038/s41598-021-01763-9.]
28. Bobrowski, R., Monika, W., Kulawik, Z.K and Piotr, W. (2022). "Best Practices to Use the Ipad Pro Lidar for Some Procedures of Data Acquisition in the Urban Forest. "Available at SSRN: https://ssrn.com/abstract=4030573 or http://dx.doi.org/10.2139/ssrn.4030573. [DOI:10.2139/ssrn.4030573]
29. Bauwens, S., Bartholomeus, H., Calders, K. and Lejeune, P. (2016). "Forest inventory with terrestrial LiDAR: A comparison of static and hand-held mobile laser scanning ". Forests. vol.7, no.6. https://doi.org/10.3390/f7060127 [DOI:10.3390/f7060127.]
30. Fatothollahi, M., Soosani, J., Mohhamadzadeh, A., Puttonen, E. and Hosseinzadeh, R. (2022). "The effectiveness of smartphone time-of-flight technology in estimating the diameter of some one of the representative trees of the Hyrcanian forests". Journal of Geomatics science and Technology. Vol.11, no.4.
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Karimzadeh jafari E, Soosani J, Varshosaz M, Naghavi H. investigatin the accuracy of iPhone LiDAR in preparing point clouds of tree trunks (Case study: Middle Zagros - Oak forests of Lorestan province). JGST 2023; 12 (3) : 5
URL: http://jgst.issgeac.ir/article-1-1095-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 12, Issue 3 (3-2023) Back to browse issues page
نشریه علمی علوم و فنون نقشه برداری Journal of Geomatics Science and Technology