[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Browse::
Journal Info::
Guide for Authors::
Submit Manuscript::
Articles archive::
For Reviewers::
Contact us::
Site Facilities::
Reviewers::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 9, Issue 4 (6-2020) ::
JGST 2020, 9(4): 19-37 Back to browse issues page
Simulation of Smoke Emission from Fires in High-Rise Buildings Using the 3D Model Generated from 2-Dimensional Cadastral Data
M. Mokhtari , M. Taleai *
Abstract:   (3354 Views)
Having a 3-Dimensional model of high-rise buildings can be used in disaster management such as fire cases to reduce casualties. The fundamental dilemma in 3D building modeling is the unavailability of suitable data sources. However, available cadastral 2D maps could be used as low-cost and attainable resources for 3D building modeling.
Smoke will be a great threat to people's health during a fire in a building and its movement and diffusion in different parts of the building are affected by the architectural design of the building. Computer simulation can be utilized to investigate smoke movement and its emanated toxic gases under various scenarios which can play a significant role in decision making during a fires incident event to reduce human casualties.
In this research, at first, 2D cadastral maps of a high-rise building located at Tehran were utilized to produce a 3D model of building with adequate details in CityEngine. Next, smoke emission in the building was simulated under seven scenarios, using PyroSim software. The two-dimensional data of apartment separation is readily available and at the lowest cost. Using some tools and techniques in spatial information systems, making it possible to utilize this data to implement a three-dimensional model of a building with details to simulate the spread of smoke from fires. The process adopted in this study made it possible to use a two-dimensional floor plan to produce a three-dimensional model of the building at the LoD4.
The results confirm the appropriateness of the constructed 3D model to simulate smoke emission under various scenarios in the high-rise building. This result shows the effect and importance of smoke transfer routes, both inside and outside the building, on the emission of toxic gases. The results show that ensuring that the ducts are closed is one of the factors controlling the spread of smoke to other floors. Flue gutters and ducts are among the most important routes for emitting smoke in high-rise buildings. The simulation results of Scenario 4 show that 40 seconds after the start of the fire, the toxic fumes spread through the stairs at all top floors of the building.
Although data from 2D cadastral maps can be used to create a three-dimensional model of a building, these data have shortcomings. The part related to the texture of the map features is faced with a lack of information such as the thickness of the walls, the type of used materials, the exact location of the components (doors and windows) on the walls, and so on. These factors affect the smoke emission simulation results. As a result, development of a three-dimensional model of the building containing more detailed information about the specifications and materials used in the walls and various parts of the building needs to be considered in future research.
The smoke emission simulation results can also be used in a variety of applications, including emergency evacuation modeling in the event of a fire in a building, along with the inclusion of other information such as number and physical characteristics of residents in different parts of the building.
Keywords: High-Rise Buildings, Disaster Management, 3D Modeling, BIM, Fire Smoke, CityEngine, PyroSim
Full-Text [PDF 2932 kb]   (1764 Downloads)    
Type of Study: Research | Subject: GIS
Received: 2019/08/30
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mokhtari M, Taleai M. Simulation of Smoke Emission from Fires in High-Rise Buildings Using the 3D Model Generated from 2-Dimensional Cadastral Data. JGST 2020; 9 (4) :19-37
URL: http://jgst.issgeac.ir/article-1-875-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 9, Issue 4 (6-2020) Back to browse issues page
نشریه علمی علوم و فنون نقشه برداری Journal of Geomatics Science and Technology