1. Adam, E., Mutanga, O., & Rugege, D. (2010). Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: a review. Wetlands ecology and management, 18, 281-296. [ DOI:10.1007/s11273-009-9169-z] 2. Alamgir, M. S. M., Sultana, M. N., & Chang, K. (2020). Link adaptation on an underwater communications network using machine learning algorithms: Boosted regression tree approach. IEEE access, 8, 73957-73971. [ DOI:10.1109/ACCESS.2020.2981973] 3. Anderson, G. P., Pukall, B., Allred, C. L., Jeong, L. S., Hoke, M. A. H. M., Chetwynd, J. H., ... & Matthew, M. W. (1999, March). FLAASH and MODTRAN4: state-of-the-art atmospheric correction for hyperspectral data. In 1999 IEEE Aerospace Conference. Proceedings (Cat. No. 99TH8403) (Vol. 4, pp. 177-181). IEEE. [ DOI:10.1109/AERO.1999.792088] 4. Bacour, C., Baret, F., Béal, D., Weiss, M., & Pavageau, K. (2006). Neural network estimation of LAI, fAPAR, fCover and LAI× Cab, from top of canopy MERIS reflectance data: Principles and validation. Remote sensing of environment, 105(4), 313-325. [ DOI:10.1016/j.rse.2006.07.014] 5. Bsaibes, A., Courault, D., Baret, F., Weiss, M., Olioso, A., Jacob, F., ... & Kzemipour, F. (2009). Albedo and LAI estimates from FORMOSAT-2 data for crop monitoring. Remote sensing of environment, 113(4), 716-729. [ DOI:10.1016/j.rse.2008.11.014] 6. Baret, F., Hagolle, O., Geiger, B., Bicheron, P., Miras, B., Huc, M., ... & Leroy, M. (2007). LAI, fAPAR and fCover CYCLOPES global products derived from VEGETATION: Part 1: Principles of the algorithm. Remote sensing of environment, 110(3), 275-286. [ DOI:10.1016/j.rse.2007.02.018] 7. Bannari, A., Morin, D., Bonn, F., & Huete, A. (1995). A review of vegetation indices. Remote sensing reviews, 13(1-2), 95-120. [ DOI:10.1080/02757259509532298] 8. Cipollini, P., Corsini, G., Diani, M., & Grasso, R. (2001). Retrieval of sea water optically active parameters from hyperspectral data by means of generalized radial basis function neural networks. IEEE Transactions on Geoscience and Remote Sensing, 39(7), 1508-1524. [ DOI:10.1109/36.934081] 9. Chen, W. T., Nenes, A., Liao, H., Adams, P. J., Li, J. L. F., & Seinfeld, J. H. (2010). Global climate response to anthropogenic aerosol indirect effects: Present day and year 2100. Journal of Geophysical Research: Atmospheres, 115(D12). [ DOI:10.1029/2008JD011619] 10. Cui, T., Green, H. S., Selleck, P. W., Zhang, Z., O'Brien, R. E., Gold, A., ... & Surratt, J. D. (2019). Chemical characterization of isoprene-and monoterpene-derived secondary organic aerosol tracers in remote marine aerosols over a quarter century. ACS Earth and Space Chemistry, 3(6), 935-946. [ DOI:10.1021/acsearthspacechem.9b00061] 11. Combal, B., Baret, F., Weiss, M., Trubuil, A., Macé, D., Pragnere, A., ... & Wang, L. (2003). Retrieval of canopy biophysical variables from bidirectional reflectance: Using prior information to solve the ill-posed inverse problem. Remote sensing of environment, 84(1), 1-15. [ DOI:10.1016/S0034-4257(02)00035-4] 12. Dong, T., Liu, J., Liu, J., He, L., Wang, R., Qian, B., ... & Shang, J. (2023). Assessing the consistency of crop leaf area index derived from seasonal Sentinel-2 and Landsat 8 imagery over Manitoba, Canada. Agricultural and Forest Meteorology, 332, 109357. [ DOI:10.1016/j.agrformet.2023.109357] 13. Dubovik, O., Holben, B., Eck, T. F., Smirnov, A., Kaufman, Y. J., King, M. D., ... & Slutsker, I. (2002). Variability of absorption and optical properties of key aerosol types observed in worldwide locations. Journal of the atmospheric sciences, 59(3), 590-608.
https://doi.org/10.1175/1520-0469(2002)059<0590:VOAAOP>2.0.CO;2 [ DOI:10.1175/1520-0469(2002)0592.0.CO;2] 14. Dzwonkowski, B., & Yan, X. H. (2005). Development and application of a neural network based ocean colour algorithm in coastal waters. International Journal of Remote Sensing, 26(6), 1175-1200. [ DOI:10.1080/01431160512331326549] 15. Fang, H., Baret, F., Plummer, S., & Schaepman‐Strub, G. (2019). An overview of global leaf area index (LAI): Methods, products, validation, and applications. Reviews of Geophysics, 57(3), 739-799. [ DOI:10.1029/2018RG000608] 16. Fernández-Guisuraga, J. M., Calvo, L., Quintano, C., Fernández-Manso, A., & Fernandes, P. M. (2023). Fractional vegetation cover ratio estimated from radiative transfer modeling outperforms spectral indices to assess fire severity in several Mediterranean plant communities. Remote Sensing of Environment, 290, 113542. [ DOI:10.1016/j.rse.2023.113542] 17. Fuyi, T., Mohammed, S. K., Abdullah, K., Lim, H. S., & Ishola, K. S. (2013, July). A comparison of atmospheric correction techniques for environmental applications. In 2013 IEEE International Conference on Space Science and Communication (IconSpace) (pp. 233-237). IEEE. [ DOI:10.1109/IconSpace.2013.6599471] 18. Giggenbach, D., & Shrestha, A. (2022). Atmospheric absorption and scattering impact on optical satellite‐ground links. International Journal of Satellite Communications and Networking, 40(2), 157-176. [ DOI:10.1002/sat.1426] 19. García-Haro, F. J., Campos-Taberner, M., Muñoz-Marí, J., Laparra, V., Camacho, F., Sanchez-Zapero, J., & Camps-Valls, G. (2018). Derivation of global vegetation biophysical parameters from EUMETSAT Polar System. ISPRS journal of photogrammetry and remote sensing, 139, 57-74. [ DOI:10.1016/j.isprsjprs.2018.03.005] 20. Goffart, J. P., Olivier, M., & Frankinet, M. (2008). Potato crop nitrogen status assessment to improve N fertilization management and efficiency: past-present-future. Potato Research, 51, 355-383. [ DOI:10.1007/s11540-008-9118-x] 21. Gopal, S., & Woodcock, C. (1996). Remote sensing of forest change using artificial neural networks. IEEE Transactions on Geoscience and Remote Sensing, 34(2), 398-404. [ DOI:10.1109/36.485117] 22. Gamon, J. A., Field, C. B., Roberts, D. A., Ustin, S. L., & Valentini, R. (1993). Functional patterns in an annual grassland during an AVIRIS overflight. Remote Sensing of Environment, 44(2-3), 239-253. [ DOI:10.1016/0034-4257(93)90019-T] 23. Gao, F., Masek, J., Schwaller, M., & Hall, F. (2006). On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance. IEEE Transactions on Geoscience and Remote sensing, 44(8), 2207-2218. [ DOI:10.1109/TGRS.2006.872081] 24. Gao, F., Hilker, T., Zhu, X., Anderson, M., Masek, J., Wang, P., & Yang, Y. (2015). Fusing Landsat and MODIS data for vegetation monitoring. IEEE Geoscience and Remote Sensing Magazine, 3(3), 47-60. [ DOI:10.1109/MGRS.2015.2434351] 25. Hastie, T., Tibshirani, R., Friedman, J., Hastie, T., Tibshirani, R., & Friedman, J. (2009). Unsupervised learning. The elements of statistical learning: Data mining, inference, and prediction, 485-585. [ DOI:10.1007/978-0-387-84858-7_14] 26. Hasekamp, O. P., Fu, G., Rusli, S. P., Wu, L., Di Noia, A., aan de Brugh, J., ... & van Amerongen, A. (2019). Aerosol measurements by SPEXone on the NASA PACE mission: expected retrieval capabilities. Journal of Quantitative Spectroscopy and Radiative Transfer, 227, 170-184. [ DOI:10.1016/j.jqsrt.2019.02.006] 27. Haboudane, D., Miller, J. R., Pattey, E., Zarco-Tejada, P. J., & Strachan, I. B. (2004). Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote sensing of environment, 90(3), 337-352. [ DOI:10.1016/j.rse.2003.12.013] 28. Ignatov, G. G. A. (1998). The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models. International Journal of Remote Sensing, 19(8), 1533-1543. [ DOI:10.1080/014311698215333] 29. Iverson, L. R., Prasad, A. M., & Liaw, A. (2004, June). New machine learning tools for predictive vegetation mapping after climate change: Bagging and Random Forest perform better than regression tree analysis. In Proceedings, UK-International Association for Landscape Ecology, Cirencester, UK (pp. 317-320). 30. Jay, S., Maupas, F., Bendoula, R., & Gorretta, N. (2017). Retrieving LAI, chlorophyll and nitrogen contents in sugar beet crops from multi-angular optical remote sensing: Comparison of vegetation indices and PROSAIL inversion for field phenotyping. Field Crops Research, 210, 33-46. [ DOI:10.1016/j.fcr.2017.05.005] 31. Jethva, H., Torres, O., & Yoshida, Y. (2019). Accuracy assessment of MODIS land aerosol optical thickness algorithms using AERONET measurements over North America. Atmospheric Measurement Techniques, 12(8), 4291-4307. [ DOI:10.5194/amt-12-4291-2019] 32. Kira, O., Nguy-Robertson, A. L., Arkebauer, T. J., Linker, R., & Gitelson, A. A. (2016). Informative spectral bands for remote green LAI estimation in C3 and C4 crops. Agricultural and Forest Meteorology, 218, 243-249. [ DOI:10.1016/j.agrformet.2015.12.064] 33. Kaufman, Y. J. (1984). Atmospheric effect on spatial resolution of surface imagery: errata. Applied Optics, 23(22), 4164-4172. [ DOI:10.1364/AO.23.004164] 34. Kaufman, Y. J., & Sendra, C. (1988). Algorithm for automatic atmospheric corrections to visible and near-IR satellite imagery. International Journal of Remote Sensing, 9(8), 1357-1381. [ DOI:10.1080/01431168808954942] 35. Kaufman, Y. J., & Tanre, D. (1996). Strategy for direct and indirect methods for correcting the aerosol effect on remote sensing: from AVHRR to EOS-MODIS. Remote sensing of Environment, 55(1), 65-79. [ DOI:10.1016/0034-4257(95)00193-X] 36. Lee, K. S. (2019). Atmospheric correction issues of optical imagery in land remote sensing. Korean Journal of Remote Sensing, 35(6_3), 1299-1312. 37. Li, Z., Wang, Y., Guo, J., Zhao, C., Cribb, M. C., Dong, X., ... & Zheng, Y. (2019). East Asian study of tropospheric aerosols and their impact on regional clouds, precipitation, and climate (EAST‐AIRCPC). Journal of Geophysical Research: Atmospheres, 124(23), 13026-13054. [ DOI:10.1029/2019JD030758] 38. Li, L., Mu, X., Jiang, H., Chianucci, F., Hu, R., Song, W., ... & Yan, G. (2023). Review of ground and aerial methods for vegetation cover fraction (fCover) and related quantities estimation: definitions, advances, challenges, and future perspectives. ISPRS Journal of Photogrammetry and Remote Sensing, 199, 133-156. [ DOI:10.1016/j.isprsjprs.2023.03.020] 39. Mao, H., Meng, J., Ji, F., Zhang, Q., & Fang, H. (2019). Comparison of machine learning regression algorithms for cotton leaf area index retrieval using Sentinel-2 spectral bands. Applied Sciences, 9(7), 1459. [ DOI:10.3390/app9071459] 40. Martínez-Ferrer, L., Moreno-Martínez, Á., Campos-Taberner, M., García-Haro, F. J., Muñoz-Marí, J., Running, S. W., ... & Camps-Valls, G. (2022). Quantifying uncertainty in high resolution biophysical variable retrieval with machine learning. Remote Sensing of Environment, 280, 113199. [ DOI:10.1016/j.rse.2022.113199] 41. Matthew, M. W., Adler-Golden, S. M., Berk, A., Felde, G., Anderson, G. P., Gorodetzky, D., ... & Shippert, M. (2002, October). Atmospheric correction of spectral imagery: evaluation of the FLAASH algorithm with AVIRIS data. In Applied Imagery Pattern Recognition Workshop, 2002. Proceedings. (pp. 157-163). IEEE. [ DOI:10.1109/AIPR.2002.1182270] 42. Meyer, D., Hogan, R. J., Dueben, P. D., & Mason, S. L. (2022). Machine learning emulation of 3D cloud radiative effects. Journal of Advances in Modeling Earth Systems, 14(3), e2021MS002550. [ DOI:10.1029/2021MS002550] 43. Norton, S. W. (1989, August). Generating better decision trees. In IJCAI (Vol. 89, pp. 800-805). 44. Nouvellon, Y., Rambal, S., Seen, D. L., Moran, M. S., Lhomme, J. P., Bégué, A., ... & Kerr, Y. (2000). Modelling of daily fluxes of water and carbon from shortgrass steppes. Agricultural and Forest Meteorology, 100(2-3), 137-153. [ DOI:10.1016/S0168-1923(99)00140-9] 45. Pasolli, E., Melgani, F., Donelli, M., Attoui, R., & De Vos, M. (2008, July). Automatic detection and classification of buried objects in GPR images using genetic algorithms and support vector machines. In IGARSS 2008-2008 IEEE International Geoscience and Remote Sensing Symposium (Vol. 2, pp. II-525). IEEE. [ DOI:10.1109/IGARSS.2008.4779044] 46. Plaza, A., Benediktsson, J. A., Boardman, J. W., Brazile, J., Bruzzone, L., Camps-Valls, G., ... & Trianni, G. (2009). Recent advances in techniques for hyperspectral image processing. Remote sensing of environment, 113, S110-S122. [ DOI:10.1016/j.rse.2007.07.028] 47. Rahman, H., & Dedieu, G. (1994). SMAC: a simplified method for the atmospheric correction of satellite measurements in the solar spectrum. Remote Sensing, 15(1), 123-143. [ DOI:10.1080/01431169408954055] 48. Rivera-Caicedo, J. P., Verrelst, J., Muñoz-Marí, J., Camps-Valls, G., & Moreno, J. (2017). Hyperspectral dimensionality reduction for biophysical variable statistical retrieval. ISPRS journal of photogrammetry and remote sensing, 132, 88-101. [ DOI:10.1016/j.isprsjprs.2017.08.012] 49. Scardino, A. J., Hudleston, D., Peng, Z., Paul, N. A., & De Nys, R. (2009). Biomimetic characterisation of key surface parameters for the development of fouling resistant materials. Biofouling, 25(1), 83-93. [ DOI:10.1080/08927010802538480] 50. Smith, J. A. (1993). LAI inversion using a back-propagation neural network trained with a multiple scattering model. IEEE Transactions on Geoscience and Remote Sensing, 31(5), 1102-1106. [ DOI:10.1109/36.263783] 51. Sola, I., García-Martín, A., Sandonís-Pozo, L., Álvarez-Mozos, J., Pérez-Cabello, F., González-Audícana, M., & Llovería, R. M. (2018). Assessment of atmospheric correction methods for Sentinel-2 images in Mediterranean landscapes. International journal of applied earth observation and geoinformation, 73, 63-76. [ DOI:10.1016/j.jag.2018.05.020] 52. Sutton, C. D. (2005). Classification and regression trees, bagging, and boosting. Handbook of statistics, 24, 303-329. [ DOI:10.1016/S0169-7161(04)24011-1] 53. Vermonte, E., El Saleous, N., & Holben, B. N. (1996). Aerosol retrieval and atmospheric correction. Advances in the use of NOAA AVHRR data for land applications, 93-124. [ DOI:10.1007/978-94-009-0203-9_5] 54. Vermote, E. F., & Vermeulen, A. (1999). Atmospheric correction algorithm: spectral reflectances (MOD09). ATBD version, 4, 1-107. 55. Vermote, E. F., & Kotchenova, S. (2008). Atmospheric correction for the monitoring of land surfaces. Journal of Geophysical Research: Atmospheres, 113(D23). [ DOI:10.1029/2007JD009662] 56. Verrelst, J., Rivera, J. P., Veroustraete, F., Muñoz-Marí, J., Clevers, J. G., Camps-Valls, G., & Moreno, J. (2015). Experimental Sentinel-2 LAI estimation using parametric, non-parametric and physical retrieval methods-A comparison. ISPRS Journal of Photogrammetry and Remote Sensing, 108, 260-272. [ DOI:10.1016/j.isprsjprs.2015.04.013] 57. Verrelst, J., Camps-Valls, G., Muñoz-Marí, J., Rivera, J. P., Veroustraete, F., Clevers, J. G., & Moreno, J. (2015). Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties-A review. ISPRS Journal of Photogrammetry and Remote Sensing, 108, 273-290. [ DOI:10.1016/j.isprsjprs.2015.05.005] 58. Verrelst, J., Malenovský, Z., Van der Tol, C., Camps-Valls, G., Gastellu-Etchegorry, J. P., Lewis, P., ... & Moreno, J. (2019). Quantifying vegetation biophysical variables from imaging spectroscopy data: a review on retrieval methods. Surveys in Geophysics, 40, 589-629. [ DOI:10.1007/s10712-018-9478-y] 59. Wang, Y., He, X., Bai, Y., Tan, Y., Zhu, B., Wang, D., ... & Huang, H. (2022). Automatic detection of suspected sewage discharge from coastal outfalls based on Sentinel-2 imagery. Science of The Total Environment, 853, 158374. [ DOI:10.1016/j.scitotenv.2022.158374] 60. Weiss, M., & Baret, F. (1999). Evaluation of canopy biophysical variable retrieval performances from the accumulation of large swath satellite data. Remote sensing of environment, 70(3), 293-306. [ DOI:10.1016/S0034-4257(99)00045-0] 61. Xiao, X., Braswell, B., Zhang, Q., Boles, S., Frolking, S., & Moore III, B. (2003). Sensitivity of vegetation indices to atmospheric aerosols: continental-scale observations in Northern Asia. Remote sensing of Environment, 84(3), 385-392. [ DOI:10.1016/S0034-4257(02)00129-3] 62. Zhang, C., & Ma, Y. (Eds.). (2012). Ensemble machine learning: methods and applications. Springer Science & Business Media. [ DOI:10.1007/978-1-4419-9326-7] 63. Zhou, X., Zhang, W., Chen, Z., Diao, S., & Zhang, T. (2021). Efficient neural network training via forward and backward propagation sparsification. Advances in neural information processing systems, 34,15216-1522
|