[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
برای نویسندگان::
آرشیو مجله و مقالات::
برای داوران::
تماس با ما::
امکانات پایگاه::
::
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
پایگاه های نمایه کننده







 
..
آمار سایت
تعداد مشاهده ی مقالات: 2609830

مقالات منتشر شده: 644
نرخ پذیرش: 74.08
نرخ رد: 17.83

میانگین دریافت تا تصمیم‌گیری اولیه: 5 تا 10 روز
میانگین دریافت تا پذیرش: 191 روز
____
..
:: دوره 14، شماره 1 - ( 6-1403 ) ::
دوره 14 شماره 1 صفحات 103-85 برگشت به فهرست نسخه ها
پایش جنگل‌زدایی در ذخیره‌گاه زیست‌کره ارسباران با استفاده از تصاویر چند زمانه ماهواره‌ای مبتنی بر شبکه U-Net بهینه‌شده
امیررضا گروسی ، علی حسینی نوه* ، هومن لطیفی
چکیده:   (148 مشاهده)
جنگل‌زدایی همچنان یکی از نگرانی‌های بزرگ در زمینه تغییرات اقلیمی و حفظ تنوع زیستی است. درعین‌حال، توسعه تکنیک‌های جدید پردازش تصویر و دسترسی گسترده به تصاویر ماهواره‌ای با حد تفکیک مکانی و زمانی بالا، شرایط بی‌نظیری برای پایش جنگل‌زدایی فراهم کرده است. این موضوع به‌ویژه در مناطقی مانند ذخیره‌گاه زیست‌کره ارسباران اهمیت دارد. روش‌های موجود پایش جنگل‌زدایی بر ترکیبی از مشاهده بصری، پروفیل‌های طیفی، آمار و تکنیک‌های یادگیری ماشین مبتنی هستند. با توجه به پیشرفت‌های اخیر در زمینۀ پردازش تصاویر توسط شبکه‌های عصبی پیچشی (CNN)، هدف این پژوهش ارزیابی عملکرد معماری U-Net بهینه‌شده برای شناسایی پوشش جنگلی به‌منظور پایش جنگل‌زدایی در تصاویر ماهواره‌ای چند زمانه است. در این راستا، یک مدل یادگیری عمیق برای پایش جنگل‌زدایی در ذخیره‌گاه زیست‌کره ارسباران بر اساس طبقه‌بندی تصاویر ماهواره‌ای Landsat بین سال‌های 2000 تا 2022 توسعه داده شد. در این مطالعه، برای تهیه ماسک از شاخص پوشش گیاهی تفاضلی نرمال‌شده (NDVI) استفاده ‌شده و سپس این ماسک‌ها به‌صورت بصری اصلاح شدند. همچنین مدل بهینه‌شده U-Net که ارائه داده‌شده است، با مدل‌های جنگل تصادفی (Random Forest) و شبکه عصبی مصنوعی (ANN) مقایسه شد. نتایج نشان داد که U-Net بهینه‌شده نسبت به روش‌های مرسوم یادگیری ماشین در طبقه‌بندی تصویر به جنگل یا غیر جنگل برتری دارد که درنتیجه صحت کلی 96.53%، کاپا 91.55%، امتیاز F1 %94.68 و IoU %90.04 به دست آمد. مدل ارائه‌شده می‌تواند تغییرات جنگل را به‌طور دقیق نشان دهد و مقادیر کاهش یا افزایش مساحت جنگل را تخمین بزند. به‌طورکلی مشاهده شد که مساحت جنگل‌های ارسباران طی دوره 2022-2000 افزایش‌یافته است. این تحقیق نشان می‌دهد که استفاده از U-Net بهینه‌شده می‌تواند ابزار مؤثری برای پایش و مدیریت پایدار منابع جنگلی باشد
شماره‌ی مقاله: 7
واژه‌های کلیدی: پایش، جنگل‌زدایی، سنجش‌ازدور، ارسباران، شبکه عصبی کانوولوشنی U-Net
متن کامل [PDF 1347 kb]   (79 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: فتوگرامتری و سنجش از دور
دریافت: 1403/3/29
فهرست منابع
1. C. Le Quéré et al., 2009, "Trends in the sources and sinks of carbon dioxide," Nature Geoscience, vol. 2, no. 12, pp. 831-836, Art no., doi: 10.1038/ngeo689. [DOI:10.1038/ngeo689]
2. G. R. van der Werf et al., 2009, "CO2 emissions from forest loss," Nature Geoscience, vol. 2, no. 11, pp. 737-738, Art no., doi: 10.1038/ngeo671. [DOI:10.1038/ngeo671]
3. J. Frick, N. Bauer, E. von Lindern, and M. Hunziker, 2018, "What forest is in the light of people's perceptions and values: Socio-cultural forest monitoring in Switzerland," Geographica Helvetica, vol. 73, pp. 335-345, Art no., doi: 10.5194/gh-73-335-2018. [DOI:10.5194/gh-73-335-2018]
4. A. N. Darvishsefat, M. "The study of spatial distribution of forest changes tin the northern forests of Iran." https://www.geospatialworld.net/article/the-study-of-spatial-distribution-of-forest-changes-tin-the-northern-forests-of-iran/ (accessed.
5. B. H. Samset, J. S. Fuglestvedt, and M. T. Lund, 2020, "Delayed emergence of a global temperature response after emission mitigation," Nature Communications, vol. 11, no. 1, p. 3261, Art no., doi: 10.1038/s41467-020-17001-1. [DOI:10.1038/s41467-020-17001-1]
6. T. S. Khosro Sagheb Talebi, Mehdi Pourhashemi, 2014, Forests of Iran, 1 ed. (Plant and Vegetation). Springer Dordrecht. [DOI:10.1007/978-94-007-7371-4]
7. K. S. T. F. Amirghasemi, D. Dargahi, 2001, "Study of Natural Regeneration Structure of Arasbaran Forests in the Seten Chay Study," Iranian Journal of Forest and Poplar Research, vol. 6, no. 1, pp. 1-62, Art no., doi: 10.22092/ijfpr.2001.109706.
8. L. Bragagnolo, R. V. da Silva, and J. M. V. Grzybowski, 2021, "Towards the automatic monitoring of deforestation in Brazilian rainforest," Ecological Informatics, vol. 66, p. 101454, Art no., doi: https://doi.org/10.1016/j.ecoinf.2021.101454 [DOI:10.1016/j.ecoinf.2021.101454.]
9. Y. Gao, M. Skutsch, J. Paneque-Gálvez, and A. Ghilardi, 2020, "Remote sensing of forest degradation: a review," Environmental Research Letters, vol. 15, no. 10, p. 103001, Art no., doi: 10.1088/1748-9326/abaad7. [DOI:10.1088/1748-9326/abaad7]
10. M. M. Awad and M. Lauteri, "Self-Organizing Deep Learning (SO-UNet)-A Novel Framework to Classify Urban and Peri-Urban Forests," Sustainability, vol. 13, no. 10, doi: 10.3390/su13105548. [DOI:10.3390/su13105548]
11. N. Younes Cárdenas, K. E. Joyce, and S. W. Maier, 2017, "Monitoring mangrove forests: Are we taking full advantage of technology?," International Journal of Applied Earth Observation and Geoinformation, vol. 63, pp. 1-14, Art no., doi: https://doi.org/10.1016/j.jag.2017.07.004 [DOI:10.1016/j.jag.2017.07.004.]
12. Planet. "Available online from." https://www.planet.com/ (accessed Sep 2023).
13. F. Monitoring. "Available online from." https://www.globalforestwatch.org/ (accessed Sep 2023).
14. L. Zhang, L. Zhang, and B. Du, 2016, "Deep Learning for Remote Sensing Data: A Technical Tutorial on the State of the Art," IEEE Geoscience and Remote Sensing Magazine, vol. 4, no. 2, pp. 22-40, Art no., doi: 10.1109/MGRS.2016.2540798. [DOI:10.1109/MGRS.2016.2540798]
15. A. Alzu'bi, A. Amira, and N. Ramzan, 2019, "Learning transfer using deep convolutional features for remote sensing image retrieval," Int. J. Comput. Sci, vol. 46, no. 4, pp. 637-644, Art no.
16. G. J. Scott, M. R. England, W. A. Starms, R. A. Marcum, and C. H. Davis, 2017, "Training Deep Convolutional Neural Networks for Land-Cover Classification of High-Resolution Imagery," IEEE Geoscience and Remote Sensing Letters, vol. 14, no. 4, pp. 549-553, Art no., doi: 10.1109/LGRS.2017.2657778. [DOI:10.1109/LGRS.2017.2657778]
17. F. Chen, R. Ren, T. Van de Voorde, W. Xu, G. Zhou, and Y. Zhou, 2018, "Fast Automatic Airport Detection in Remote Sensing Images Using Convolutional Neural Networks," Remote Sensing, vol. 10, no. 3, p. 443, Art no. [Online]. Available: https://www.mdpi.com/2072-4292/10/3/443. [DOI:10.3390/rs10030443]
18. R. Kemker, C. Salvaggio, and C. Kanan, 2018, "Algorithms for semantic segmentation of multispectral remote sensing imagery using deep learning," ISPRS Journal of Photogrammetry and Remote Sensing, vol. 145, pp. 60-77, Art no., doi: https://doi.org/10.1016/j.isprsjprs.2018.04.014 [DOI:10.1016/j.isprsjprs.2018.04.014.]
19. J. Morel, A. Bac, and T. Kanai, 2020, "Segmentation of unbalanced and in-homogeneous point clouds and its application to 3D scanned trees," The Visual Computer, vol. 36, no. 10, pp. 2419-2431, Art no., doi: 10.1007/s00371-020-01966-7. [DOI:10.1007/s00371-020-01966-7]
20. Z. Cheng, A. Qu, and X. He, 2022, "Contour-aware semantic segmentation network with spatial attention mechanism for medical image," The Visual Computer, pp. 1-14, Art no.
21. A. Ouahabi and A. Taleb-Ahmed, 2021, "RETRACTED: Deep learning for real-time semantic segmentation: Application in ultrasound imaging," Pattern Recognition Letters, vol. 144, pp. 27-34, Art no., doi: https://doi.org/10.1016/j.patrec.2021.01.010 [DOI:10.1016/j.patrec.2021.01.010.]
22. V. Khryashchev, L. Ivanovsky, V. Pavlov, A. Ostrovskaya, and A. Rubtsov, "Comparison of Different Convolutional Neural Network Architectures for Satellite Image Segmentation," in 2018 23rd Conference of Open Innovations Association (FRUCT), 13-16 Nov. 2018 2018, pp. 172-179, doi: 10.23919/FRUCT.2018.8588071. [DOI:10.23919/FRUCT.2018.8588071]
23. N. Flood, F. Watson, and L. Collett, 2019, "Using a U-net convolutional neural network to map woody vegetation extent from high resolution satellite imagery across Queensland, Australia," International Journal of Applied Earth Observation and Geoinformation, vol. 82, p. 101897, Art no., doi: 10.1016/j.jag.2019.101897. [DOI:10.1016/j.jag.2019.101897]
24. L. Bragagnolo, R. V. da Silva, and J. M. V. Grzybowski, 2021, "Amazon forest cover change mapping based on semantic segmentation by U-Nets," Ecological Informatics, vol. 62, p. 101279, Art no., doi: https://doi.org/10.1016/j.ecoinf.2021.101279 [DOI:10.1016/j.ecoinf.2021.101279.]
25. A. M. T. Z. Moradi, 2020, "Comparison of Artificial Neural Network, Logistic Regression, and Similarity-Based Weighted Sample Learning Approaches in Modeling and Predicting Deforestation: A Case Study of Gorganrud Watershed, Golestan Province," Environmental Science and Technology, vol. 21, no. 11, pp. 217-227, Art no., doi: 10.22034/jest.2020.10480.
26. M. A. H. Mahmoudzadeh, 2019, "Modeling Deforestation Using Neural Network and Geographic Information System (Forests Around Khorramabad)," Remote Sensing and GIS in Natural Resources, vol. 10, no. 4, pp. 74-90, Art no. [Online]. Available: https://girs.bushehr.iau.ir/article_670420_ae27ee70137f5a11f6ea3ae151b9c8af.pdf.
27. A. Henareh Khalyani and A. L. Mayer, 2013, "Spatial and temporal deforestation dynamics of Zagros forests (Iran) from 1972 to 2009," Landscape and Urban Planning, vol. 117, pp. 1-12, Art no., doi: https://doi.org/10.1016/j.landurbplan.2013.04.014 [DOI:10.1016/j.landurbplan.2013.04.014.]
28. N. Karimi, S. Golian, and D. Karimi, 2016, "Monitoring deforestation in Iran, Jangal-Abr Forest using multi-temporal satellite images and spectral mixture analysis method," Arabian Journal of Geosciences, vol. 9, no. 3, p. 214, Art no., doi: 10.1007/s12517-015-2250-4. [DOI:10.1007/s12517-015-2250-4]
29. S. Arekhi, 2011, "Modeling spatial pattern of deforestation using GIS and logistic regression: A case study of northern Ilam forests, Ilam province, Iran," African Journal of Biotechnology, vol. 10, pp. 16236-16249, Art no. [DOI:10.5897/AJB11.1122]
30. P. P. de Bem, O. A. de Carvalho Junior, R. Fontes Guimarães, and R. A. Trancoso Gomes, 2020, "Change Detection of Deforestation in the Brazilian Amazon Using Landsat Data and Convolutional Neural Networks," Remote Sensing, vol. 12, no. 6, p. 901, Art no. [Online]. Available: https://www.mdpi.com/2072-4292/12/6/901. [DOI:10.3390/rs12060901]
31. R. B. Andrade et al., 2020, "Evaluation of Semantic Segmentation Methods for Deforestation Detection in the Amazon," The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XLIII-B3-2020, pp. 1497-1505, Art no., doi: 10.5194/isprs-archives-XLIII-B3-2020-1497-2020. [DOI:10.5194/isprs-archives-XLIII-B3-2020-1497-2020]
32. A. Mazza, F. Sica, P. Rizzoli, and G. Scarpa, 2019, "TanDEM-X Forest Mapping Using Convolutional Neural Networks," Remote Sensing, vol. 11, no. 24, p. 2980, Art no. [Online]. Available: https://www.mdpi.com/2072-4292/11/24/2980. [DOI:10.3390/rs11242980]
33. S.-H. Lee, K.-J. Han, K. Lee, K.-J. Lee, K.-Y. Oh, and M.-J. Lee, 2020, "Classification of Landscape Affected by Deforestation Using High-Resolution Remote Sensing Data and Deep-Learning Techniques," Remote Sensing, vol. 12, no. 20, p. 3372, Art no. [Online]. Available: https://www.mdpi.com/2072-4292/12/20/3372. [DOI:10.3390/rs12203372]
34. F. H. Wagner et al., 2020, "Regional Mapping and Spatial Distribution Analysis of Canopy Palms in an Amazon Forest Using Deep Learning and VHR Images," Remote Sensing, vol. 12, no. 14, p. 2225, Art no. [Online]. Available: https://www.mdpi.com/2072-4292/12/14/2225. [DOI:10.3390/rs12142225]
35. F. H. Wagner et al., 2020, "Mapping Atlantic rainforest degradation and regeneration history with indicator species using convolutional network," PLoS One, vol. 15, no. 2, p. e0229448, Art no., doi: 10.1371/journal.pone.0229448. [DOI:10.1371/journal.pone.0229448]
36. A. Alzu'bi and L. Alsmadi, 2022, "Monitoring deforestation in Jordan using deep semantic segmentation with satellite imagery," Ecological Informatics, vol. 70, p. 101745, Art no., doi: 10.1016/j.ecoinf.2022.101745. [DOI:10.1016/j.ecoinf.2022.101745]
37. A. Jamali, S. K. Roy, J. Li, and P. Ghamisi, 2023, "TransU-Net++: Rethinking attention gated TransU-Net for deforestation mapping," International Journal of Applied Earth Observation and Geoinformation, vol. 120, p. 103332, Art no., doi: 10.1016/j.jag.2023.103332. [DOI:10.1016/j.jag.2023.103332]
38. L. Shumilo, M. Lavreniuk, N. Kussul, and B. Shevchuk, "Automatic Deforestation Detection based on the Deep Learning in Ukraine," in 2021 11th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), 22-25 Sept. 2021 2021, vol. 1, pp. 337-342, doi: 10.1109/IDAACS53288.2021.9661008. [DOI:10.1109/IDAACS53288.2021.9661008]
39. L. Breiman, 2001, "Random Forests," Machine Learning, vol. 45, no. 1, pp. 5-32, Art no., doi: 10.1023/A:1010933404324. [DOI:10.1023/A:1010933404324]
40. T. Hastie, R. Tibshirani, and J. Friedman, 2009, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition (Springer Series in Statistics). [DOI:10.1007/978-0-387-84858-7]
41. A. Liaw and M. Wiener, 2001, "Classification and Regression by RandomForest," Forest, vol. 23.
42. M. M. Taye, 2023, "Theoretical Understanding of Convolutional Neural Network: Concepts, Architectures, Applications, Future Directions," Computation, vol. 11, no. 3, p. 52, Art no. [Online]. Available: https://www.mdpi.com/2079-3197/11/3/52. [DOI:10.3390/computation11030052]
43. W. S. McCulloch and W. Pitts, 1943, "A logical calculus of the ideas immanent in nervous activity," The bulletin of mathematical biophysics, vol. 5, pp. 115-133, Art no. [DOI:10.1007/BF02478259]
44. R. C. Hernández-Gómez and E. Cantillo-Higuera, 2018, "La restauración ecológica como estrategia de construcción social en la Vereda Chipautá, Municipio de Guaduas, Cundinamarca," Ambiente y Desarrollo, vol. 22, no. 42, pp. 1-15, Art no. [DOI:10.11144/Javeriana.ayd22-42.reec]
45. T. Pinheiro, M. Escada, D. Valeriano, P. Hostert, F. Gollnow, and H. Müller, 2016, "Forest degradation associated with logging frontier expansion in the Amazon: the BR-163 region in Southwestern Pará, Brazil," Earth Interactions, vol. 20, no. 17, pp. 1-26, Art no. [DOI:10.1175/EI-D-15-0016.1]
46. I. Md Jelas, M. A. Zulkifley, M. Abdullah, and M. Spraggon, 2024, "Deforestation detection using deep learning-based semantic segmentation techniques: a systematic review," Frontiers in Forests and Global Change, vol. 7, p. 1300060, Art no. [DOI:10.3389/ffgc.2024.1300060]
47. C. Shorten and T. M. Khoshgoftaar, 2019, "A survey on image data augmentation for deep learning," Journal of big data, vol. 6, no. 1, pp. 1-48, Art no. [DOI:10.1186/s40537-019-0197-0]
48. O. Ronneberger, P. Fischer, and T. Brox, "U-Net: Convolutional Networks for Biomedical Image Segmentation," in Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015, Cham, N. Navab, J. Hornegger, W. M. Wells, and A. F. Frangi, Eds., 2015// 2015: Springer International Publishing, pp. 234-241. [DOI:10.1007/978-3-319-24574-4_28]
49. J. Long, E. Shelhamer, and T. Darrell, "Fully convolutional networks for semantic segmentation," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 3431-3440. [DOI:10.1109/CVPR.2015.7298965]
50. P. P. Fork. "Available online from." https://pillow.readthedocs.io/en/stable/reference/ImageChops.html (accessed.
51. R. a. W. M. O. o. I. Forest. https://frw.ir/index.jsp?siteid=1&pageid=1493&newsview=169950&pro=nobak (accessed May 2024.
52. M. Goyal, A. Oakley, P. Bansal, D. Dancey, and M. H. Yap, 2019, "Skin lesion segmentation in dermoscopic images with ensemble deep learning methods," Ieee Access, vol. 8, pp. 4171-4181, Art no. [DOI:10.1109/ACCESS.2019.2960504]
53. L. Nanni, D. Cuza, A. Lumini, A. Loreggia, and S. Brahnam, 2021, "Deep ensembles in bioimage segmentation," arXiv preprint arXiv:2112.12955.
54. J. Park et al., 2023, "Selective ensemble methods for deep learning segmentation of major vessels in invasive coronary angiography," (in eng), Med Phys, vol. 50, no. 12, pp. 7822-7839, Art no., doi: 10.1002/mp.16554. [DOI:10.1002/mp.16554]
55. A. ebrahimi, A. Garousi, A. hosseini naveh, and A. _mohammadzadeh, 2023, "Improving the YOLOv5 Deep Neural Network for Detecting Vehicles and Outdoor Pools from Drone Data," (in eng), Journal of Geomatics Science and Technology, Research vol. 13, no. 1, pp. 83-97, Art no., doi: 10.61186/jgst.13.1.83. [DOI:10.61186/jgst.13.1.83]
ارسال پیام به نویسنده مسئول

ارسال نظر درباره این مقاله
نام کاربری یا پست الکترونیک شما:

CAPTCHA



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

garousi A, hosseininaveh A, latifi H. Monitoring deforestation in Arsbaran Biosphere Reserve using multi-temporal satellite images based on the refined U-Net network. JGST 2024; 14 (1) : 7
URL: http://jgst.issgeac.ir/article-1-1189-fa.html

گروسی امیررضا، حسینی نوه علی، لطیفی هومن. پایش جنگل‌زدایی در ذخیره‌گاه زیست‌کره ارسباران با استفاده از تصاویر چند زمانه ماهواره‌ای مبتنی بر شبکه U-Net بهینه‌شده. علوم و فنون نقشه برداری. 1403; 14 (1) :85-103

URL: http://jgst.issgeac.ir/article-1-1189-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 14، شماره 1 - ( 6-1403 ) برگشت به فهرست نسخه ها
نشریه علمی علوم و فنون نقشه برداری Journal of Geomatics Science and Technology