[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
برای نویسندگان::
آرشیو مجله و مقالات::
برای داوران::
تماس با ما::
امکانات پایگاه::
::
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
پایگاه های نمایه کننده







 
..
آمار سایت
تعداد مشاهده ی مقالات: 2791616

مقالات منتشر شده: 661
نرخ پذیرش: 73.6
نرخ رد: 17.63

میانگین دریافت تا تصمیم‌گیری اولیه: 5 تا 10 روز
میانگین دریافت تا پذیرش: 191 روز
____
..
:: دوره 14، شماره 2 - ( 9-1403 ) ::
دوره 14 شماره 2 صفحات 87-71 برگشت به فهرست نسخه ها
توسعه یک فرآیند شبکه تحلیلی فازی (ANP) و مدل فرآیند تحلیل سلسله مراتبی فازی (AHP) برای ارزیابی پتانسیل نیروگاه های آبی کوچک
حسین جولایی* ، علی مریدی ، محمد سعید حیدری ، علیرضا وفایی نژاد
چکیده:   (447 مشاهده)
علیرغم اینکه بخش انرژی از طریق انتشار گازهای گلخانه ای به تخریب محیط زیست کمک کرده است، جوامع بشری در پاسخ به این موضوع توجه بیشتری به منابع انرژی تجدیدپذیر مانند نیروگاه های آبی کوچک داشته اند. برای تعیین پهنه بندی از 12 لایه معیارهای محیطی، فنی و جغرافیایی استفاده شده است. برای دستیابی به نتایج این مطالعه، تصمیم‌گیری چند معیاره (MCDM) را با الگوریتم‌های فازی ترکیب کردیم. اساساً روش وزن دهی فازی-AHP به عنوان روشی برای ارزیابی معیارهای فنی و محیطی که رابطه درونی با یکدیگر ندارند، استفاده می شود. با استفاده از روش ANP فازی، می‌توانیم معیارهای جغرافیایی را که به یکدیگر مرتبط هستند و از نظر اهمیت نسبی ارزیابی می‌شوند، وزن کنیم. به منظور شناسایی نقشه پهنه بندی، لایه ها با استفاده از عملگر گاما 0.9 به منظور شناسایی نقشه پهنه بندی شده اند. برای تهیه نقشه پهنه بندی نهایی، نقشه های پهنه بندی و فیزیوگرافی با استفاده از عملگر Sum ترکیب می شوند. از این رو 13 مکان مناسب برای احداث نیروگاه انتخاب شد که در نتیجه سالانه 22084.69 مگاوات انرژی تولید و از انتشار 5.8 تن گازهای گلخانه ای به جو جلوگیری شد. در طول این مطالعه، حوضه ای واقع در ایران به نام حوضه آبخیز کارون مورد بررسی قرار گرفت. همچنین روش های بکار رفته در این تحقیق می تواند در سایر حوزه های آبخیز نیز انجام شود و پتانسیل سایر نیروگاه ها از جمله نیروگاه های خورشیدی و بادی مورد ارزیابی قرار گیرد.
شماره‌ی مقاله: 5
واژه‌های کلیدی: SHP (نیروگاه های آبی کوچک)، AHP، ANP، انتشار گازهای گلخانه ای
متن کامل [PDF 2737 kb]   (267 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: سامانه های اطلاعات مکانی
دریافت: 1403/1/30
فهرست منابع
1. S. M. Hosseini, A. Aslani, and A. Kasaeian, "Energy, water, and environmental impacts assessment of electricity generation in Iran," Sustainable Energy Technologies and Assessments, vol. 52, p. 102193, 2022. [DOI:10.1016/j.seta.2022.102193]
2. G. E. Review, "Assessing the effects of economic recoveries on global energy demand and CO2 emissions in 2021," 2021.
3. N. O. a. A. Administration, "Carbon dioxide now more than 50% higher than pre-industrial levels," ed, June 3, 2022
4. "Tripling renewable power and doubling energy efficiency by 2030: Crucial steps towards 1.5°C, International Renewable Energy Agency, Abu Dhabi.," in IRENA, ed, 2023.
5. R. Marks-Bielska, S. Bielski, K. Pik, and K. Kurowska, "The importance of renewable energy sources in Poland's energy mix," Energies, vol. 13, no. 18, p. 4624, 2020. [DOI:10.3390/en13184624]
6. X. Xu, J. E. González, S. Shen, S. Miao, and J. Dou, "Impacts of urbanization and air pollution on building energy demands-Beijing case study," Applied Energy, vol. 225, pp. 98-109, 2018. [DOI:10.1016/j.apenergy.2018.04.120]
7. IEA, "World Energy Outlook 2021," in IEA, ed. paris, (2021).
8. R. Brini, "Renewable and non-renewable electricity consumption, economic growth and climate change: Evidence from a panel of selected African countries," Energy, vol. 223, p. 120064, 2021. [DOI:10.1016/j.energy.2021.120064]
9. V. Khare, C. Khare, S. Nema, and P. Baredar, "Chapter 1 - Introduction to Energy Sources," in Tidal Energy Systems, V. Khare, C. Khare, S. Nema, and P. Baredar Eds.: Elsevier, 2019, pp. 1-39. [DOI:10.1016/B978-0-12-814881-5.00001-6]
10. E. F. Moran, M. C. Lopez, N. Moore, N. Müller, and D. W. Hyndman, "Sustainable hydropower in the 21st century," Proceedings of the National Academy of Sciences, vol. 115, no. 47, pp. 11891-11898, 2018, doi: doi:10.1073/pnas.1809426115. [DOI:10.1073/pnas.1809426115]
11. A. S. Assessment, "Hydropower Development in India."
12. X. Zhang et al., "Impacts of climate change, policy and Water-Energy-Food nexus on hydropower development," Renewable Energy, vol. 116, pp. 827-834, 2018. [DOI:10.1016/j.renene.2017.10.030]
13. J. Zhang, C.-Y. Luo, Z. Curtis, S.-h. Deng, Y. Wu, and Y.-w. Li, "Carbon dioxide emission accounting for small hydropower plants-A case study in southwest China," Renewable and Sustainable Energy Reviews, vol. 47, pp. 755-761, 2015. [DOI:10.1016/j.rser.2015.03.027]
14. P. Tomczyk and M. Wiatkowski, "Challenges in the development of hydropower in selected European countries," Water, vol. 12, no. 12, p. 3542, 2020. [DOI:10.3390/w12123542]
15. Y. Bayazıt, R. Bakış, and C. Koç, "An investigation of small scale hydropower plants using the geographic information system," Renewable and Sustainable Energy Reviews, vol. 67, pp. 289-294, 2017. [DOI:10.1016/j.rser.2016.09.062]
16. D. Connolly, H. Lund, B. V. Mathiesen, and M. Leahy, "A review of computer tools for analysing the integration of renewable energy into various energy systems," Applied energy, vol. 87, no. 4, pp. 1059-1082, 2010. [DOI:10.1016/j.apenergy.2009.09.026]
17. P. Aragonés-Beltrán, F. Chaparro-González, J.-P. Pastor-Ferrando, and A. Pla-Rubio, "An AHP (Analytic Hierarchy Process)/ANP (Analytic Network Process)-based multi-criteria decision approach for the selection of solar-thermal power plant investment projects," Energy, vol. 66, pp. 222-238, 2014. [DOI:10.1016/j.energy.2013.12.016]
18. A. A. Othman et al., "GIS-based modeling for selection of dam sites in the Kurdistan Region, Iraq," ISPRS International Journal of Geo-Information, vol. 9, no. 4, p. 244, 2020. [DOI:10.3390/ijgi9040244]
19. X. Dai, "Dam site selection using an integrated method of AHP and GIS for decision making support in Bortala, Northwest China," University of Twente, 2016.
20. T. F. Ajibade et al., "Potential dam sites selection using integrated techniques of remote sensing and GIS in Imo State, Southeastern, Nigeria," Sustainable Water Resources Management, vol. 6, pp. 1-16, 2020. [DOI:10.1007/s40899-020-00416-5]
21. O. Caleb, M. Adepoju, I. Idris, A. Oluwatola, N. Ihenacho, and A. Olaide, "Small hydropower dam site suitability modelling in upper Benue river watershed, Nigeria," Applied Water Science, vol. 11, no. 8, 2021. [DOI:10.1007/s13201-021-01466-6]
22. D. G. Palomino Cuya, L. Brandimarte, I. Popescu, J. Alterach, and M. Peviani, "A GIS-based assessment of maximum potential hydropower production in La Plata basin under global changes," Renewable Energy, vol. 50, pp. 103-114, 2013/02/01/ 2013, doi: https://doi.org/10.1016/j.renene.2012.06.019 [DOI:10.1016/j.renene.2012.06.019.]
23. S. Kucukali, O. Al Bayatı, and H. H. Maraş, "Finding the most suitable existing irrigation dams for small hydropower development in Turkey: A GIS-Fuzzy logic tool," Renewable Energy, vol. 172, pp. 633-650, 2021/07/01/ 2021, doi: https://doi.org/10.1016/j.renene.2021.03.049 [DOI:10.1016/j.renene.2021.03.049.]
24. O. A. Fasipe, O. C. Izinyon, and J. O. Ehiorobo, "Hydropower potential assessment using spatial technology and hydrological modelling in Nigeria river basin," Renewable Energy, vol. 178, pp. 960-976, 2021/11/01/ 2021, doi: https://doi.org/10.1016/j.renene.2021.06.133 [DOI:10.1016/j.renene.2021.06.133.]
25. Y. Noorollahi, A. G. Senani, A. Fadaei, M. Simaee, and R. Moltames, "A framework for GIS-based site selection and technical potential evaluation of PV solar farm using Fuzzy-Boolean logic and AHP multi-criteria decision-making approach," Renewable Energy, vol. 186, pp. 89-104, 2022. [DOI:10.1016/j.renene.2021.12.124]
26. Z. Ullah, M. Elkadeem, K. M. Kotb, I. B. Taha, and S. Wang, "Multi-criteria decision-making model for optimal planning of on/off grid hybrid solar, wind, hydro, biomass clean electricity supply," Renewable Energy, vol. 179, pp. 885-910, 2021. [DOI:10.1016/j.renene.2021.07.063]
27. T. L. Saaty, "TheAnalyticHierarchyProcess," McGrawhill, Juc. New York, 1980.
28. T. L. Saaty, Fundamentals of decision making and priority theory with the analytic hierarchy process. RWS publications, 1994.
29. T. L. Saaty, Decision making with dependence and feedback: The analytic network process (no. 2). RWS publications Pittsburgh, 1996.
30. T. L. Saaty, Theory and applications of the analytic network process: decision making with benefits, opportunities, costs, and risks. RWS publications, 2005.
31. C.-L. Yang, S.-P. Chuang, and R.-H. Huang, "Manufacturing evaluation system based on AHP/ANP approach for wafer fabricating industry," Expert Systems with Applications, vol. 36, no. 8, pp. 11369-11377, 2009/10/01/ 2009, doi: https://doi.org/10.1016/j.eswa.2009.03.023 [DOI:10.1016/j.eswa.2009.03.023.]
32. C. Gencer and D. Gürpinar, "Analytic network process in supplier selection: A case study in an electronic firm," Applied Mathematical Modelling, vol. 31, no. 11, pp. 2475-2486, 2007/11/01/ 2007, doi: https://doi.org/10.1016/j.apm.2006.10.002 [DOI:10.1016/j.apm.2006.10.002.]
33. R. Yu and G.-H. Tzeng, "A soft computing method for multi-criteria decision making with dependence and feedback," Applied Mathematics and Computation, vol. 180, no. 1, pp. 63-75, 2006/09/01/ 2006, doi: https://doi.org/10.1016/j.amc.2005.11.163 [DOI:10.1016/j.amc.2005.11.163.]
34. M. Dağdeviren and İ. Yüksel, "A fuzzy analytic network process (ANP) model for measurement of the sectoral competititon level (SCL)," Expert Systems with Applications, vol. 37, no. 2, pp. 1005-1014, 2010/03/01/ 2010, doi: https://doi.org/10.1016/j.eswa.2009.05.074 [DOI:10.1016/j.eswa.2009.05.074.]
35. D. L. Tennant, "Instream Flow Regimens for Fish, Wildlife, Recreation and Related Environmental Resources," Fisheries, vol. 1, no. 4, pp. 6-10, 1976, doi: https://doi.org/10.1577/1548-8446(1976)001<0006:IFRFFW>2.0.CO;2. https://doi.org/10.1577/1548-8446(1976)001<0006:IFRFFW>2.0.CO;2 [DOI:10.1577/1548-8446(1976)0012.0.CO;2.]
36. A. Hatamkhani, A. Moridi, and J. Yazdi, "A simulation - Optimization models for multi-reservoir hydropower systems design at watershed scale," Renewable Energy, vol. 149, pp. 253-263, 2020/04/01/ 2020, doi: https://doi.org/10.1016/j.renene.2019.12.055 [DOI:10.1016/j.renene.2019.12.055.]
37. A. Hatamkhani and A. Moridi, "Multi-Objective Optimization of Hydropower and Agricultural Development at River Basin Scale," Water Resources Management, vol. 33, 10/01 2019, doi: 10.1007/s11269-019-02365-x. [DOI:10.1007/s11269-019-02365-x]
ارسال پیام به نویسنده مسئول

ارسال نظر درباره این مقاله
نام کاربری یا پست الکترونیک شما:

CAPTCHA



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Joulaei H, Moridi A, Heidari M S, Vafaeinajad A. Developing a fuzzy analytic network process (ANP) and fuzzy analytic hierarchy process (AHP) model to evaluate small hydropower plant potential. JGST 2024; 14 (2) : 5
URL: http://jgst.issgeac.ir/article-1-1183-fa.html

جولایی حسین، مریدی علی، حیدری محمد سعید، وفایی نژاد علیرضا. توسعه یک فرآیند شبکه تحلیلی فازی (ANP) و مدل فرآیند تحلیل سلسله مراتبی فازی (AHP) برای ارزیابی پتانسیل نیروگاه های آبی کوچک. علوم و فنون نقشه برداری. 1403; 14 (2) :71-87

URL: http://jgst.issgeac.ir/article-1-1183-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 14، شماره 2 - ( 9-1403 ) برگشت به فهرست نسخه ها
نشریه علمی علوم و فنون نقشه برداری Journal of Geomatics Science and Technology