1. H. C. Longuet-Higgins, "A computer algorithm for reconstructing a scene from two projections," Nature, vol. 293, pp. 133-135, 1981. [ DOI:10.1038/293133a0] 2. C. G. Harris and J. Pike, "3D positional integration from image sequences," Image and Vision Computing, vol. 6, pp. 87-90, 1988. [ DOI:10.1016/0262-8856(88)90003-0] 3. J.-M. Frahm, P. Fite-Georgel, D. Gallup, T. Johnson, R. Raguram, C. Wu, et al., "Building rome on a cloudless day," in European Conference on Computer Vision, 2010, pp. 368-381. [ DOI:10.1007/978-3-642-15561-1_27] 4. F. Fraundorfer and D. Scaramuzza, "Visual odometry: Part i: The first 30 years and fundamentals," IEEE Robotics and Automation Magazine, vol. 18, pp. 80-92, 2011. [ DOI:10.1109/MRA.2011.943233] 5. D. Nistér, O. Naroditsky, and J. Bergen, "Visual odometry," in Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004., 2004, pp. I-I. 6. H. Durrant-Whyte and T. Bailey, "Simultaneous localization and mapping: part I," IEEE robotics & automation magazine, vol. 13, pp. 99-110, 2006. [ DOI:10.1109/MRA.2006.1638022] 7. B. Gao, H. Lang, and J. Ren, "Stereo Visual SLAM for Autonomous Vehicles: A Review," in 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2020, pp. 1316-1322. [ DOI:10.1109/SMC42975.2020.9283161] [ PMID] [ PMCID] 8. C. Debeunne and D. Vivet, "A review of visual-LiDAR fusion based simultaneous localization and mapping," Sensors, vol. 20, p. 2068, 2020. [ DOI:10.3390/s20072068] [ PMID] [ PMCID] 9. A. Pfrunder, P. V. Borges, A. R. Romero, G. Catt, and A. Elfes, "Real-time autonomous ground vehicle navigation in heterogeneous environments using a 3D LiDAR," in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2017, pp. 2601-2608. [ DOI:10.1109/IROS.2017.8206083] 10. H. P. Moravec, "Obstacle avoidance and navigation in the real world by a seeing robot rover," Stanford Univ CA Dept of Computer Science1980. 11. K. Yousif, A. Bab-Hadiashar, and R. Hoseinnezhad, "An overview to visual odometry and visual SLAM: Applications to mobile robotics," Intelligent Industrial Systems, vol. 1, pp. 289-311, 2015. [ DOI:10.1007/s40903-015-0032-7] 12. J. Zhang and S. Singh, "LOAM: Lidar Odometry and Mapping in Real-time," in Robotics: Science and Systems, 2014. [ DOI:10.15607/RSS.2014.X.007] 13. M. O. Aqel, M. H. Marhaban, M. I. Saripan, and N. B. Ismail, "Review of visual odometry: types, approaches, challenges, and applications," Springerplus, vol. 5, p. 1897, 2016. [ DOI:10.1186/s40064-016-3573-7] [ PMID] [ PMCID] 14. T. Taketomi, H. Uchiyama, and S. Ikeda, "Visual SLAM algorithms: a survey from 2010 to 2016," IPSJ Transactions on Computer Vision and Applications, vol. 9, pp. 1-11, 2017. [ DOI:10.1186/s41074-017-0027-2] 15. R. A. Newcombe, S. J. Lovegrove, and A. J. Davison, "DTAM: Dense tracking and mapping in real-time," in Computer Vision (ICCV), 2011 IEEE International Conference on, 2011, pp. 2320-2327. [ DOI:10.1109/ICCV.2011.6126513] 16. J. Engel, T. Schöps, and D. Cremers, "LSD-SLAM: Large-scale direct monocular SLAM," in European Conference on Computer Vision, 2014, pp. 834-849. [ DOI:10.1007/978-3-319-10605-2_54] 17. A. Concha Belenguer and J. Civera Sancho, "DPPTAM: Dense piecewise planar tracking and mapping from a monocular sequence," in Proc. IEEE/RSJ Int. Conf. Intell. Rob. Syst., 2015. [ DOI:10.1109/IROS.2015.7354184] 18. G. Klein and D. Murray, "Parallel tracking and mapping for small AR workspaces," in Mixed and Augmented Reality, 2007. ISMAR 2007. 6th IEEE and ACM International Symposium on, 2007, pp. 225-234. [ DOI:10.1109/ISMAR.2007.4538852] [ PMCID] 19. C. D. Herrera, K. Kim, J. Kannala, K. Pulli, and J. Heikkilä, "DT-SLAM: deferred triangulation for robust SLAM," in 3D Vision (3DV), 2014 2nd International Conference on, 2014, pp. 609-616. [ DOI:10.1109/3DV.2014.49] 20. R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, "ORB-SLAM: a versatile and accurate monocular SLAM system," IEEE transactions on robotics, vol. 31, pp. 1147-1163, 2015. [ DOI:10.1109/TRO.2015.2463671] 21. R. Mur-Artal and J. D. Tardos, "ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras," IEEE Transactions on Robotics, vol. 33, pp. 1255-1262, 2017. [ DOI:10.1109/TRO.2017.2705103] 22. C. Forster, M. Pizzoli, and D. Scaramuzza, "SVO: Fast semi-direct monocular visual odometry," in Robotics and Automation (ICRA), 2014 IEEE International Conference on, 2014, pp. 15-22. [ DOI:10.1109/ICRA.2014.6906584] [ PMID] 23. C. Forster, Z. Zhang, M. Gassner, M. Werlberger, and D. Scaramuzza, "SVO: Semidirect visual odometry for monocular and multicamera systems," IEEE Transactions on Robotics, vol. 33, pp. 249-265, 2016. [ DOI:10.1109/TRO.2016.2623335] 24. L. Heng and B. Choi, "Semi-direct visual odometry for a fisheye-stereo camera," in 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2016, pp. 4077-4084. [ DOI:10.1109/IROS.2016.7759600] 25. R. Gomez-Ojeda, J. Briales, and J. Gonzalez-Jimenez, "PL-SVO: Semi-direct Monocular Visual Odometry by combining points and line segments," in 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2016, pp. 4211-4216. [ DOI:10.1109/IROS.2016.7759620] 26. R. Gomez-Ojeda and J. Gonzalez-Jimenez, "Robust stereo visual odometry through a probabilistic combination of points and line segments," in 2016 IEEE International Conference on Robotics and Automation (ICRA), 2016, pp. 2521-2526. [ DOI:10.1109/ICRA.2016.7487406] 27. A. Pumarola, A. Vakhitov, A. Agudo, A. Sanfeliu, and F. Moreno-Noguer, "PL-SLAM: Real-time monocular visual SLAM with points and lines," in 2017 IEEE international conference on robotics and automation (ICRA), 2017, pp. 4503-4508. [ DOI:10.1109/ICRA.2017.7989522] 28. R. Gomez-Ojeda, F.-A. Moreno, D. Zuñiga-Noël, D. Scaramuzza, and J. Gonzalez-Jimenez, "Pl-slam: a stereo slam system through the combination of points and line segments," IEEE Transactions on Robotics, 2019. [ DOI:10.1109/TRO.2019.2899783] 29. X. Feng, W. Hao, and B.-f. FANG, "Research on Unmanned Vehicle Positioning Technology Based on Multi-sensor Fusion," DEStech Transactions on Computer Science and Engineering, 2018. 30. R. G. Von Gioi, J. Jakubowicz, J.-M. Morel, and G. Randall, "LSD: A fast line segment detector with a false detection control," IEEE transactions on pattern analysis and machine intelligence, vol. 32, pp. 722-732, 2008. [ DOI:10.1109/TPAMI.2008.300] [ PMID] 31. E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, "ORB: An efficient alternative to SIFT or SURF," in 2011 International conference on computer vision, 2011, pp. 2564-2571. [ DOI:10.1109/ICCV.2011.6126544] 32. M. Burri, J. Nikolic, P. Gohl, T. Schneider, J. Rehder, S. Omari, et al., "The EuRoC micro aerial vehicle datasets," The International Journal of Robotics Research, vol. 35, pp. 1157-1163, 2016. [ DOI:10.1177/0278364915620033]
|