1. Towfiqul Islam, A.R.M., Talukdar, S., Mahato, S., Kundu, S., Eibek, K.U., Pham, Q.B., Kuriqi, A., Linh, N.T.T. (2021). "Flood susceptibility modelling using advanced ensemble machine learning models." Vol.Geoscience Frontiers, No.12(3), PP.101075. [ DOI:10.1016/j.gsf.2020.09.006] 2. Costache, R. (2019). "Flash-flood Potential Index mapping using weights of evidence, decision Trees models and their novel hybrid integration." Vol.Stochastic Environmental Research and Risk Assessment, No.33(7), PP.1375-1402. [ DOI:10.1007/s00477-019-01689-9] 3. Bubeck, P., Thieken, A.H. (2018). "What helps people recover from floods? Insights from a survey among flood-affected residents in Germany." Vol.Regional environmental change, No.18, PP.287-296. [ DOI:10.1007/s10113-017-1200-y] 4. Hong, H., Panahi, M., Shirzadi, A., Ma, T., Liu, J., Zhu, A.X., Chen, W., Kougias, I., Kazakis, N. (2018a). "Flood susceptibility assessment in Hengfeng area coupling adaptive neuro-fuzzy inference system with genetic algorithm and differential evolution." Vol. Science of the total Environment, No.621, PP.1124-1141. [ DOI:10.1016/j.scitotenv.2017.10.114] 5. Huang, K., Li, X., Liu, X., Seto, K.C. (2019). "Projecting global urban land expansion and heat island intensification through 2050." Vol.Environmental Research Letters, No.14(11), P.114037. [ DOI:10.1088/1748-9326/ab4b71] 6. Alvarado-Aguilar, D., Jiménez, J.A., Nicholls, R.J. (2012). "Flood hazard and damage assessment in the Ebro Delta (NW Mediterranean) to relative sea level rise." Vol.Natural Hazards, No.62, PP.1301-1321. [ DOI:10.1007/s11069-012-0149-x] 7. Billa, L., Shattri, M., Mahmud, A.R., Ghazali, A.H. (2006). "Comprehensive planning and the role of SDSS in flood disaster management in Malaysia." Vol.Disaster Prevention and Management: An International Journal, No.15(2), PP.233-240. [ DOI:10.1108/09653560610659775] 8. Siahkamari, S., Haghizadeh, A., Zeinivand, H., Tahmasebipour, N., Rahmati, O. (2018). "Spatial prediction of flood-susceptible areas using frequency ratio and maximum entropy models." Vol.Geocarto international, No.33(9), PP.927-941. [ DOI:10.1080/10106049.2017.1316780] 9. Su, J., Lü, H., Zhu, Y., Cui, Y., Wang, X. (2019). "Evaluating the hydrological utility of latest IMERG products over the Upper Huaihe River Basin, China." Vol.Atmospheric Research, No.225, PP.17-29. [ DOI:10.1016/j.atmosres.2019.03.025] 10. Tehrany, M.S., Pradhan, B., Jebur, M.N. (2015a). "Flood susceptibility analysis and its verification using a novel ensemble support vector machine and frequency ratio method." Vol.Stochastic environmental research and risk assessment, No.29, PP.1149-1165. [ DOI:10.1007/s00477-015-1021-9] 11. Li, Y., Martinis, S., Wieland, M. (2019). "Urban flood mapping with an active self-learning convolutional neural network based on TerraSAR-X intensity and interferometric coherence." Vol.ISPRS Journal of Photogrammetry and Remote Sensing, No.152, PP.178-191. [ DOI:10.1016/j.isprsjprs.2019.04.014] 12. Benzougagh, B., Frison, P.L., Meshram, S.G., Boudad, L., Dridri, A., Sadkaoui, D., Mimich, K., Khedher, K.M. (2022). "Flood Mapping Using Multi-temporal Sentinel-1 SAR Images: A Case Study-Inaouene Watershed from Northeast of Morocco." Vol.Iranian Journal of Science and Technology, Transactions of Civil Engineering, No.46, PP.1481-1490 [ DOI:10.1007/s40996-021-00683-y] 13. Sachdeva, S., Kumar, B. (2022). "Flood susceptibility mapping using extremely randomized trees for Assam 2020 floods." Vol. Eco Inform, No.67, P.101498. [ DOI:10.1016/j.ecoinf.2021.101498] 14. Zhao, G., Pang, B., Xu, Z., Yue, J., Tu, T. (2018). "Mapping flood susceptibility in mountainous areas on a national scale in China." Vol. Science of the Total Environment, No.615, PP.1133-1142. [ DOI:10.1016/j.scitotenv.2017.10.037] 15. Tang, Z., Zhang, H., Yi, S., Xiao, Y. (2018). "Assessment of flood susceptible areas using spatially explicit, probabilistic multi-criteria decision analysis." Vol.Journal of Hydrology, No.558, PP144-158. [ DOI:10.1016/j.jhydrol.2018.01.033] 16. Miles, R.E., Snow, C.C. (1984). "Designing strategic human resources systems." Vol.Organizational dynamics, No.13, PP.36-52. [ DOI:10.1016/0090-2616(84)90030-5] 17. McLay, C.D.A., Dragten, R., Sparling, G., Selvarajah, N. (2001). "Predicting groundwater nitrate concentrations in a region of mixed agricultural land use: A comparison of three approaches. Environ." Vol.Environmental pollution, No.115, PP.191-204. [ DOI:10.1016/S0269-7491(01)00111-7] 18. Alaghmand, S., bin Abdullah, R., Abustan, I., & Eslamian, S. (2012). "Comparison between capabilities of HEC-RAS and MIKE11 hydraulic models in river flood risk modelling (a case study of Sungai Kayu Ara River basin, Malaysia)." Vol.International Journal of Hydrology Science and Technology, No.2(3), PP.270-291. [ DOI:10.1504/IJHST.2012.049187] 19. Hong, H., Tsangaratos, P., Ilia, I., Liu, J., Zhu, A.X., Chen, W. (2018b). "Application of fuzzy weight of evidence and data mining techniques in construction of flood susceptibility map of Poyang County, China." Vol.Science of the total environment, No.625, PP.575-588. [ DOI:10.1016/j.scitotenv.2017.12.256] 20. Chapi, K., Singh, V.P., Shirzadi, A., Shahabi, H., Bui, D.T., Pham, B.T., Khosravi, K. (2017). "A novel hybrid artificial intelligence approach for flood susceptibility assessment." Vol.Environmental modelling & software, No.95, PP.229-245. [ DOI:10.1016/j.envsoft.2017.06.012] 21. Zou, J., Han, Y., & So, S. S. (2009). "Overview of artificial neural networks." Vol. Artificial neural networks: Methods and applications, PP. 14-22. [ DOI:10.1007/978-1-60327-101-1_2] 22. Tehrany, M.S., Pradhan, B., Jebur, M.N. (2013). "Spatial prediction of flood susceptible areas using rule based decision tree (DT) and a novel ensemble bivariate and multivariate statistical models in GIS." Vol.Journal of hydrology, No.504, PP.69-79. [ DOI:10.1016/j.jhydrol.2013.09.034] 23. Rahmati, O., Pourghasemi, H.R. (2017). "Identification of Critical Flood Prone Areas in Data-Scarce and Ungauged Regions: A Comparison of Three Data Mining Models." Vol.Water resources management, No.31, PP.1473-1487. [ DOI:10.1007/s11269-017-1589-6] 24. Naimi, B., Araújo, M.B. (2016). "sdm: a reproducible and extensible R platform for species distribution modelling." Vol.Ecography, No.39(4), PP.368-375. [ DOI:10.1111/ecog.01881] 25. Ebrahimi, E., Sayahnia, R., Ranjbaran, Y., Vaissi, S., Ahmadzadeh, F. (2021). "Dynamics of threatened mammalian distribution in Iran ' s protected areas under climate change." Vol.Mammalian Biology, No.101(6), PP.759-774. [ DOI:10.1007/s42991-021-00136-z] 26. Ebrahimi, E., Ahmadzadeh, F. (2022). "Dynamics of habitat changes as a result of climate change in Zagros Mountains Range (Iran), a case study on Amphibians." Vol.Nova Biologica Reperta, No.9(1), PP.29-39. [ DOI:10.52547/nbr.9.1.29] 27. Mohammadi, S., Ebrahimi, E., Shahriari Moghadam, M., Bosso, L. (2019). "Modelling current and future potential distributions of two desert jerboas under climate change in Iran." Vol.Ecological Informatics, No.52, PP.7-13. [ DOI:10.1016/j.ecoinf.2019.04.003] 28. Maddah, S., Mojaradi, B., & Alizadeh, H. (2025). Improving deep learning-based flood susceptibility modeling by integrating data balancing technique and dual-input convolutional neural network. Natural Hazards, 1-23. [ DOI:10.1007/s11069-025-07482-y] 29. Arabameri, A., Saha, S., Mukherjee, K., Blaschke, T., Chen, W., Ngo, P. T. T., & Band, S. S. (2020a). Modeling spatial flood using novel ensemble artificial intelligence approaches in northern Iran. Remote Sensing, 12(20), 3423. [ DOI:10.3390/rs12203423] 30. Arabameri, A., Saha, S., Mukherjee, K., Blaschke, T., Chen, W., Ngo, P. T. T., & Band, S. S. (2020b). Flood susceptibility modeling utilizing advanced ensemble machine learning techniques in the Marand Plain, East Azarbaijan, Iran. Remote Sensing, 12(20), 3423. [ DOI:10.3390/rs12203423] 31. Bashirgonbad, M., Farokhzadeh, B., & Gholami, V. (2024). Enhancing flood mapping through ensemble machine learning in the Gamasyab watershed, Western Iran. Environmental Science and Pollution Research, 31(38), 50427-50442. [ DOI:10.1007/s11356-024-34501-5] 32. Khosravi, K., Nohani, E., Maroufinia, E., Pourghasemi, H.R. (2016). "A GIS-based flood susceptibility assessment and its mapping in Iran: a comparison between frequency ratio and weights-of-evidence bivariate statistical models with multi-criteria decision-making technique." Vol.Natural hazards, No.83, PP.947-987. [ DOI:10.1007/s11069-016-2357-2] 33. Rajabizadeh, Y., Ayyoubzadeh, S. A., Zahirir, A. (2019). "Flood Survey of Golestan Province in 2018-2019 and Providing Solutions for Its Control and Management in the Future." Vol.Iranian journal of Ecohydrology No.6(4), PP.921-942. 34. Khalifeh Soltanian, F., Abbasi, M. and Riyahi Bakhtyari, H.R. (2019). "Flood monitoring using ndwi and mndwi spectral indices: A case study of aghqala flood-2019, Golestan Province, Iran." Vol.The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, No.42, PP.605-607. [ DOI:10.5194/isprs-archives-XLII-4-W18-605-2019] 35. Safaripour, M., Monavari, M., Zare, M., Abedi, Z., Gharagozlou, A. (2012). "Flood risk assessment using GIS (case study: Golestan province, Iran)." Vol.Pol.J. Environ. Stud, No.21, PP.1817-1824. 36. Omidvar, B., Khodaei, H. (2008). "Using value engineering to optimize flood forecasting and flood warning systems: Golestan and Golabdare watersheds in Iran as case studies." Vol.Natural hazards, No.47, PP.281-296. [ DOI:10.1007/s11069-008-9233-7] 37. Abdollahipour, A., Ahmadi, H., Aminnejad, B.) 2021(. "Evaluating the reconstruction method of satellite-based monthly precipitation over Golestan province, Northern Iran." Vol.Acta Geophys. No.69(6), PP.2305-2323. [ DOI:10.1007/s11600-021-00623-4] 38. Tourani, M., Çağlayan, A. (2021). "Example of the biggest flood disaster in Iranian history: Golestan province (NE Iran)." Geoscience for Society, Education and Environment. 39. Safariana, A., & Cheshomi, A. (2020). "The impact of climate change on micro, small, and medium enterprises, and the factors influencing the intention to flood risk reduction and climate change adaptation: A case study in Agh ghala city and Agh ghala industrial park, Golestan province, Iran." 40. Singha, M., Dong, J., Sarmah, S., You, N., Zhou, Y., Zhang, G., Doughty, R., Xiao, X. (2020). "Identifying floods and flood-affected paddy rice fields in Bangladesh based on Sentinel-1 imagery and Google Earth Engine. ISPRS J. Photogramm." Vol.Remote Sensing, No.166, PP.278-293. [ DOI:10.1016/j.isprsjprs.2020.06.011] 41. Mousavi, M., Amini, J. and Maghsudi, Y. (2015). "Proposal speckle reduction algorithm for SAR images." Vol.Journal of Geomatics Science and Technology, No.5(1), PP.189-202. 42. Dodangeh, P., Ebadi, H., Kiani, A. (2021). "Deep Learning Network for Flood Extent Mapping based on the integration of Sentinel 2 and MODIS satellite imagery." Vol.Journal of Environmental Studies, No.47(2), PP.181-204 43. Yommy, A.S., Liu, R. and Wu, S. (2015). "August. SAR image despeckling using refined Lee filter.". Proc. of the 7th International Conference on Intelligent Human-Machine Systems and Cybernetics, Hangzhou, China, pp. 260-265. [ DOI:10.1109/IHMSC.2015.236] 44. Esmailzadeh, M., Amini, J. (2016). "Geometric Calibration of SAR Images to Eliminate Earth's Surface Topography Distortions." Vol.Journal of Geomatics Science and Technology. No.5(4), PP.173-185. 45. Du, Y., Zhang, Y., Ling, F., Wang, Q., Li, W., Li, X. (2016). "Water bodies' mapping from Sentinel-2 imagery with Modified Normalized Difference Water Index at 10-m spatial resolution produced by sharpening the swir band." Vol.Remote Sensing, No.8(4), P.354. [ DOI:10.3390/rs8040354] 46. Shafizadeh-Moghadam, H., Valavi, R., Shahabi, H., Chapi, K., Shirzadi, A. (2018). "Novel forecasting approaches using combination of machine learning and statistical models for flood susceptibility mapping." Vol. Journal of environmental management, No.217, PP.1-11. [ DOI:10.1016/j.jenvman.2018.03.089] 47. Alkhuraiji, W. (2020). "GIS and DEM Based Watershed Characteristics of Wadi Al-Adaira Basin, KSA. Bull." Vol.la Société Géographie d'Egypte, No.93(1), PP.131-158. [ DOI:10.21608/bsge.2020.141584] 48. Naimi, B., Hamm, N.A., Groen, T.A., Skidmore, A.K. and Toxopeus, A.G. (2014). "Where is positional uncertainty a problem for species distribution modelling?." Vol.Ecography, No37(2), PP.191-203. [ DOI:10.1111/j.1600-0587.2013.00205.x] 49. Ghane-Ameleh, S., Khosravi, M., Saberi-Pirooz, R., Ebrahimi, E., Aghbolaghi, M.A., Ahmadzadeh, F. (2021). "Mid-Pleistocene Transition as a trigger for diversification in the Irano-Anatolian region: Evidence revealed by phylogeography and distribution pattern of the eastern three-lined lizard." Vol.Ecology and Conservation, No.31, P.e01839. [ DOI:10.1016/j.gecco.2021.e01839] 50. Ebrahimi, E., Ranjbaran, Y., Sayahnia, R., Ahmadzadeh, F. (2022). "Assessing the climate change effects on the distribution pattern of the Azerbaijan Mountain Newt (Neurergus crocatus)." Vol.Ecological Complexity, No.50, P.100997. [ DOI:10.1016/j.ecocom.2022.100997] 51. Naimi, B. (2015). usdm: Uncertainty analysis for species distribution models (Version 1.1-12). 52. Ahmadzadeh, F., Ebrahimi, E., & Naimi, B. (2017). "Species distribution potential of striped hyaena (Hyaena hyaena) in response to climate change in Iran." Vol.Environmental Sciences, No.15(4), PP.215-232. 53. Arabameri, A., Saha, S., Mukherjee, K., Blaschke, T., Chen, W., Ngo, P.T.T., Band, S.S. (2020). "Modeling spatial flood using novel ensemble artificial intelligence approaches in northern Iran." Vol.Remote Sensing, No.12(20), PP.1-30. [ DOI:10.3390/rs12203423] 54. Park, N.W. (2015). "Using maximum entropy modeling for landslide susceptibility mapping with multiple geoenvironmental data sets." Vol. Environmental Earth Sciences, No.73, PP.937-949. [ DOI:10.1007/s12665-014-3442-z] 55. Tehrany, M.S., Pradhan, B., Mansor, S., Ahmad, N. (2015b). "Flood susceptibility assessment using GIS-based support vector machine model with different kernel types." Vol.Catena, No.125, PP.91-101. [ DOI:10.1016/j.catena.2014.10.017] 56. Naimi, B., Capinha, C., Ribeiro, J., Rahbek, C., Strubbe, D., Reino, L., Araújo, M.B. (2022). "Potential for invasion of traded birds under climate and land-cover change." Vol.Global Change Biology, No.28(19), PP.5654-5666. [ DOI:10.1111/gcb.16310] 57. Arabameri, A., Rezaei, K., Cerdà, A., Conoscenti, C., Kalantari, Z. (2019). "A comparison of statistical methods and multi-criteria decision making to map flood hazard susceptibility in Northern Iran." Vol.Science of the Total Environment, No.660, PP.443-458. [ DOI:10.1016/j.scitotenv.2019.01.021] 58. Avand, M., Janizadeh, S., Naghibi, S.A., Pourghasemi, H.R., Khosrobeigi Bozchaloei, S. and Blaschke, T., 2019. A comparative assessment of random forest and k-nearest neighbor classifiers for gully erosion susceptibility mapping. Water, 11(10), p.2076. [ DOI:10.3390/w11102076] 59. Taalab, K., Cheng, T., Zhang, Y. (2018). "Mapping landslide susceptibility and types using Random Forest." Vol.Big Earth Data, No.2(2), PP.159-178. [ DOI:10.1080/20964471.2018.1472392] 60. Breiman, L. (2001). "Random forests." Vol.Machine learning, No.45, PP.5-32. [ DOI:10.1023/A:1010933404324] 61. Ghayoumi, R., Ebrahimi, E., Hosseini Tayefeh, F., & Keshtkar, M. (2019). "Predicting the effects of climate change on the distribution of mangrove forests in Iran using the maximum entropy model." Journal of RS and GIS for Natural Resources, No. 10(2), PP. 34-47. 62. Rahmati, O., Karnejadi, A., Choobin, J., ... & Ata. (2023). "Evaluation of the Capability of the Flexible Discriminant Analysis Model in Predicting Flood Susceptibility in the Zarrineh River Watershed." Water and Soil Modeling and Management. 63. Ebrahimi, E., Araújo, M. B., & Naimi, B. (2023). "Flood susceptibility mapping to improve models of species distributions." Vol.Ecological Indicators, No. 157, PP. 111-250. [ DOI:10.1016/j.ecolind.2023.111250] 64. Shahiri Tabarestani, E., Hadian, S., Pham, Q.B., Ali, S.A., Phung, D.T. (2022). "Flood potential mapping by integrating the bivariate statistics, multi-criteria decision-making, and machine learning techniques." Vol. Stochastic Environmental Research and Risk Assessment, No.37, PP.1415-1430. [ DOI:10.1007/s00477-022-02342-8] 65. Alavi, M.S., Fallahi, A., Mottaki, Z. and Aslani, F. (2021). "Post-disaster sheltering process after the 2019 floods, in Golestan province, Iran." Vol.International journal of disaster resilience in the built environment, No.13(5), PP.568-582. [ DOI:10.1108/IJDRBE-03-2021-0023]
|