With the increasing growth of positioning technologies and the use of navigation systems, a large volume of moving point object data, such as people, cars, ships, and animals, is available. However, the lack of integrity and incompleteness of these data for systemic, human, and environmental reasons challenges the analysis of trajectories and their effective application in various fields. Therefore, the reconstruction of missing data plays an important role in maximizing the capacity of movement data, particularly in navigation and track tracking. In this study, using the similarity measurement of trajectories approach, trajectories containing gaps are reconstructed. In this regard, the context-based dynamic time warping (CDTW) method, along with speed and direction movement parameters, are used to measure the similarity and reconstruct the trajectories of vessels in two regions of the Atlantic and Pacific Oceans. Two mechanisms, a constant number of trajectories and a specified threshold, are considered for reconstruction. The results show that using a constant number of trajectories in comparison with the specified threshold reduces the root mean square error (RMSE) and mean absolute error (MAE) from 1.5 and 1.4 to 0.5 and 0.4, respectively. In addition, increasing the length of the trajectories improves the RMSE and MAE values from 0.5 to 0.1 in the case of a constant number of trajectories and 1.5 to 0.3 in the case of the specified threshold.
Type of Study: Research |
Subject: GIS Received: 2023/07/16
References
1. Y. Zheng, "Trajectory data mining: an overview," ACM Trans. Intell. Syst. Technol., vol. 6, no. 3, pp. 1-41, 2015. [DOI:10.1145/2743025]
2. Z. Fan, A. Arai, X. Song, A. Witayangkurn, H. Kanasugi, and R. Shibasaki, "A collaborative filtering approach to citywide human mobility completion from sparse call records," IJCAI Int. Jt. Conf. Artif. Intell., vol. 2016-Janua, pp. 2500-2506, 2016.
3. D. Hecker, H. Stange, C. Körner, and M. May, "Sample Bias due to Missing Data in Mobility Surveys," in 2010 IEEE International Conference on Data Mining Workshops, 2010, pp. 241-248. doi: 10.1109/ICDMW.2010.162. [DOI:10.1109/ICDMW.2010.162]
4. J. A. Long, "Kinematic interpolation of movement data," Int. J. Geogr. Inf. Sci., vol. 30, no. 5, pp. 854-868, 2016, doi: 10.1080/13658816.2015.1081909. [DOI:10.1080/13658816.2015.1081909]
5. M. Li, S. Gao, F. Lu, and H. Zhang, "Reconstruction of human movement trajectories from large-scale low-frequency mobile phone data," Comput. Environ. Urban Syst., vol. 77, p. 101346, 2019, doi:
https://doi.org/10.1016/j.compenvurbsys.2019.101346 [DOI:10.1016/j.compenvurbsys.2019.101346.]
6. M. Liang, R. W. Liu, Q. Zhong, J. Liu, and J. Zhang, "Neural Network-Based Automatic Reconstruction of Missing Vessel Trajectory Data," in 2019 IEEE 4th International Conference on Big Data Analytics (ICBDA), 2019, pp. 426-430. doi: 10.1109/ICBDA.2019.8713215. [DOI:10.1109/ICBDA.2019.8713215]
7. S. Pathak, M. He, S. Malinchik, and S. Sobolevsky, "Pattern Ensembling for Spatial Trajectory Reconstruction," Jan. 2021, [Online]. Available: http://arxiv.org/abs/2101.09844
8. Y. Tao et al., "A comparative analysis of trajectory similarity measures," GIScience Remote Sens., vol. 58, no. 5, pp. 643-669, 2021, doi: 10.1080/15481603.2021.1908927. [DOI:10.1080/15481603.2021.1908927]
9. M. Sharif and A. A. Alesheikh, "A Review on the Process of Point Objects' Movement and Their Trajectory Similarity Measurement Approacheا," issge-gej, vol. 7, no. 1, pp. 41-54, Mar. 2016.
10. M. Sharif and A. A. Alesheikh, "Context-awareness in similarity measures and pattern discoveries of trajectories: a context-based dynamic time warping method," GIScience Remote Sens., vol. 54, no. 3, pp. 426-452, May 2017, doi: 10.1080/15481603.2017.1278644. [DOI:10.1080/15481603.2017.1278644]
11. D. Bucher et al., "Exploiting Fitness Apps for Sustainable Mobility - Challenges Deploying the GoEco! App," no. Ict4s, pp. 89-98, 2016, doi: 10.2991/ict4s-16.2016.11. [DOI:10.2991/ict4s-16.2016.11]
12. K. Corder, U. Ekelund, R. M. Steele, N. J. Wareham, and S. Brage, "Assessment of physical activity in youth," J. Appl. Physiol., vol. 105, no. 3, pp. 977-987, 2008, doi: 10.1152/japplphysiol.00094.2008. [DOI:10.1152/japplphysiol.00094.2008]
13. B. W. Wheeler, A. R. Cooper, A. S. Page, and R. Jago, "Greenspace and children's physical activity: A GPS/GIS analysis of the PEACH project," Prev. Med. (Baltim)., vol. 51, no. 2, pp. 148-152, Aug. 2010, doi: 10.1016/J.YPMED.2010.06.001. [DOI:10.1016/j.ypmed.2010.06.001]
14. D. Seng, Q. Zhang, X. Zhang, G. Chen, and X. Chen, "Spatiotemporal prediction of air quality based on LSTM neural network," Alexandria Eng. J., vol. 60, no. 2, pp. 2021-2032, 2021, doi:
https://doi.org/10.1016/j.aej.2020.12.009 [DOI:10.1016/j.aej.2020.12.009.]
15. D. Alizadeh, A. A. Alesheikh, and M. Sharif, "Vessel Trajectory Prediction Using Historical Automatic Identification System Data," J. Navig., vol. 74, no. 1, pp. 156-174, 2021, doi: 10.1017/S0373463320000442. [DOI:10.1017/S0373463320000442]
Jamali M, Alesheikh A A, Sharif M. Reconstruction of the trajectories of moving objects using context-based dynamic time warping similarity measure method. JGST 2023; 13 (1) : 6 URL: http://jgst.issgeac.ir/article-1-1152-en.html