[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
برای نویسندگان::
آرشیو مجله و مقالات::
برای داوران::
تماس با ما::
امکانات پایگاه::
::
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
پایگاه های نمایه کننده







 
..
آمار سایت
تعداد مشاهده ی مقالات: 2713764

مقالات منتشر شده: 653
نرخ پذیرش: 73.75
نرخ رد: 17.62

میانگین دریافت تا تصمیم‌گیری اولیه: 5 تا 10 روز
میانگین دریافت تا پذیرش: 190 روز
____
..
:: دوره 13، شماره 1 - ( 6-1402 ) ::
دوره 13 شماره 1 صفحات 97-83 برگشت به فهرست نسخه ها
بهبود شبکه یادگیری عمیق YOLOv5 برای شناسایی خودرو و استخرهای روباز با استفاده از تصاویر پهپادی
آیدین ابراهیمی* ، امیررضا گروسی ، علی حسینی نوه ، علی محمدزاده
چکیده:   (1243 مشاهده)
تشخیص اجسام کوچک مانند خودرو و استخرها در تصاویر پهپادی با توان تفکیک مکانی بالا، به دلیل ویژگی‌های هندسی و رنگ مشابه آن‌ها، با چالش‌هایی روبرو است. افزایش تعداد خودروها نه تنها از منظر ترافیک شهری یک چالش مهم محسوب می‌گردد بلکه منجر به مشکلات زیست‌محیطی نظیر آلودگی و گرم‌شدن هوا نیز می‌گردد؛ از این‌رو، پایش این اهداف می‌تواند نقشی مهم در مدیریت این مشکلات داشته باشد. از طرفی، ساخت و نگهداری استخرهای آبی نیز به مقدار قابل توجهی آب نیاز دارد و پایش این اهداف در محیط‌های شهری برای صرفه‌جویی در مصرف آب ضروری است. در این راستا، تصاویر سنجش‌ازدور پهپادی و شبکه‌های یادگیری عمیق که توانایی بالایی در شناسایی اشیاء از این تصاویر را دارند، ابزاری مناسب برای پایش این اهداف محسوب می‌شوند. اگرچه تاکنون پژوهش‌های ارزشمندی در این زمینه برای مقابله با هریک از چالش‌های محیط زیستی مطرح‌شده صورت گرفته‌است، اما همچنان کاستی‌هایی در آن‌ها وجود دارد. در این مطالعه، یک شبکه یادگیری عمیق جدید YOLOv5+ برای شناسایی دو هدف خود رو و استخر آبی از تصاویر پهپادی توسعه داده شده‌است، بطوری که در آن عملکرد شبکه در استخراج ویژگی‌های کارآمد به دلیل بکارگیری مکانیسم Inception در لایه‌های میانی تقویت شده‌است. همچنین، در این تحقیق، از داده‌های پهپادی مرجع DJI Mavic و DJI Mini Se که از مناطق تیانجین در کشور چین و کان در کشور فرانسه اخذ شده‌اند، برای ارزیابی عملکرد شبکه پیشنهادی و مقایسه آن با شبکه‌های یادگیری عمیق YOLOv5 و YOLOv7 استفاده گردید. در نهایت، نتایج نشان داد شبکه پیشنهادی با دقت کلی 95%، بطور میانگین عملکرد شبکه‌های قیاسی را 2 درصد بهبود بخشیده‌است که نشان‌دهنده کارایی رویکرد پیشنهادی در این تحقیق است.
 
شماره‌ی مقاله: 7
واژه‌های کلیدی: یادگیری عمیق، تصاویر سنجش‌ازدور ماهواره‌ای، تشخیص خودرو، استخر، قدرت تفکیک مکانی بالا، شبکه‌های عصبی پیچشی
متن کامل [PDF 1214 kb]   (417 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: فتوگرامتری و سنجش از دور
دریافت: 1402/3/13
فهرست منابع
1. D. Zhao, D. Xie, F. Yin, L. Liu, J. Feng, and T. Ashraf, "Estimation of Pb Content Using Reflectance Spectroscopy in Farmland Soil near Metal Mines, Central China," Remote Sensing, vol. 14, no. 10, p. 2420, 2022. [Online]. Available: https://www.mdpi.com/2072-4292/14/10/2420. [DOI:10.3390/rs14102420]
2. Z. Chen et al., "Automatic Estimation of Apple Orchard Blooming Levels Using the Improved YOLOv5," Agronomy, vol. 12, no. 10, p. 2483, 2022. [Online]. Available: https://www.mdpi.com/2073-4395/12/10/2483. [DOI:10.3390/agronomy12102483]
3. A. D. W. Sumari, A. S. Pranata, I. A. Mashudi, I. N. Syamsiana, and C. O. Sereati, "Automatic Target Recognition and Identification for Military Ground-to-Air Observation Tasks using Support Vector Machine and Information Fusion," in 2022 International Conference on ICT for Smart Society (ICISS), 10-11 Aug. 2022 2022, pp. 01-08, doi: 10.1109/ICISS55894.2022.9915256. [DOI:10.1109/ICISS55894.2022.9915256]
4. Z. Wang, X. Li, Y. Mao, L. Li, X. Wang, and Q. Lin, "Dynamic simulation of land use change and assessment of carbon storage based on climate change scenarios at the city level: A case study of Bortala, China," Ecological Indicators, vol. 134, p. 108499, 2022/01/01/ 2022, doi: https://doi.org/10.1016/j.ecolind.2021.108499 [DOI:10.1016/j.ecolind.2021.108499.]
5. Y. Liu et al., "Study of the Automatic Recognition of Landslides by Using InSAR Images and the Improved Mask R-CNN Model in the Eastern Tibet Plateau," Remote Sensing, vol. 14, no. 14, p. 3362, 2022. [Online]. Available: https://www.mdpi.com/2072-4292/14/14/3362. [DOI:10.3390/rs14143362]
6. J. Meng, J. Yan, and J. Zhao, "Bubble Plume Target Detection Method of Multibeam Water Column Images Based on Bags of Visual Word Features," Remote Sensing, vol. 14, no. 14, p. 3296, 2022. [Online]. Available: https://www.mdpi.com/2072-4292/14/14/3296. [DOI:10.3390/rs14143296]
7. S. Jin, X. Li, X. Yang, J. A. Zhang, and D. Shen, "Identification of Tropical Cyclone Centers in SAR Imagery Based on Template Matching and Particle Swarm Optimization Algorithms," IEEE Transactions on Geoscience and Remote Sensing, vol. 57, no. 1, pp. 598-608, 2019, doi: 10.1109/TGRS.2018.2863259. [DOI:10.1109/TGRS.2018.2863259]
8. S. Jian, J. Jiang, K. Lu, and Y. Zhang, "SEU-tolerant Restricted Boltzmann Machine learning on DSP-based fault detection," in 2014 12th International Conference on Signal Processing (ICSP), 19-23 Oct. 2014 2014, pp. 1503-1506, doi: 10.1109/ICOSP.2014.7015250. [DOI:10.1109/ICOSP.2014.7015250]
9. S. Ren, K. He, R. Girshick, and J. Sun, "Faster r-cnn: Towards real-time object detection with region proposal networks," Advances in neural information processing systems, vol. 28, 2015.
10. R. Girshick, J. Donahue, T. Darrell, and J. Malik, "Rich feature hierarchies for accurate object detection and semantic segmentation," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2014, pp. 580-587. [DOI:10.1109/CVPR.2014.81]
11. R. Girshick, "Fast R-CNN," in 2015 IEEE International Conference on Computer Vision (ICCV), 7-13 Dec. 2015 2015, pp. 1440-1448, doi: 10.1109/ICCV.2015.169. [DOI:10.1109/ICCV.2015.169]
12. Z. Ge, S. Liu, F. Wang, Z. Li, and J. Sun, "Yolox: Exceeding yolo series in 2021," arXiv preprint arXiv:2107.08430, 2021.
13. M. Kasper-Eulaers, N. Hahn, S. Berger, T. Sebulonsen, Ø. Myrland, and P. E. Kummervold, "Short Communication: Detecting Heavy Goods Vehicles in Rest Areas in Winter Conditions Using YOLOv5," Algorithms, vol. 14, no. 4, p. 114, 2021. [Online]. Available: https://www.mdpi.com/1999-4893/14/4/114. [DOI:10.3390/a14040114]
14. A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, "Yolov4: Optimal speed and accuracy of object detection," arXiv preprint arXiv:2004.10934, 2020.
15. J. Redmon and A. Farhadi, "Yolov3: An incremental improvement," arXiv preprint arXiv:1804.02767, 2018.
16. J. Redmon and A. Farhadi, "YOLO9000: better, faster, stronger," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 7263-7271. [DOI:10.1109/CVPR.2017.690]
17. J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, "You Only Look Once: Unified, Real-Time Object Detection," presented at the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016. [Online]. Available: https://doi.ieeecomputersociety.org/10.1109/CVPR.2016.91. https://doi.org/10.1109/CVPR.2016.91 [DOI:10.1109/CVPR.2016.91.]
18. Y. Zhang, Z. Guo, J. Wu, Y. Tian, H. Tang, and X. Guo, "Real-time vehicle detection based on improved yolo v5," Sustainability, vol. 14, no. 19, p. 12274, 2022. [DOI:10.3390/su141912274]
19. C.-Y. Fu, W. Liu, A. Ranga, A. Tyagi, and A. C. Berg, "Dssd: Deconvolutional single shot detector," arXiv preprint arXiv:1701.06659, 2017.
20. W. Liu et al., "Ssd: Single shot multibox detector," in Computer Vision-ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part I 14, 2016: Springer, pp. 21-37. [DOI:10.1007/978-3-319-46448-0_2]
21. Z. Chen, L. Cao, and Q. Wang, "Yolov5-based vehicle detection method for high-resolution UAV images," Mobile Information Systems, vol. 2022, 2022. [DOI:10.1155/2022/1828848]
22. D. Yan et al., "An improved faster R-CNN method to detect tailings ponds from high-resolution remote sensing images," Remote Sensing, vol. 13, no. 11, p. 2052, 2021. [DOI:10.3390/rs13112052]
23. S. Luo, J. Yu, Y. Xi, and X. Liao, "Aircraft target detection in remote sensing images based on improved YOLOv5," Ieee Access, vol. 10, pp. 5184-5192, 2022. [DOI:10.1109/ACCESS.2022.3140876]
24. A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with deep convolutional neural networks," Advances in neural information processing systems, vol. 25, 2012.
25. Y. Da, X. Gao, and M. Li, "Remote Sensing Image Ship Detection Based on Improved YOLOv3," in 2022 7th International Conference on Intelligent Computing and Signal Processing (ICSP), 15-17 April 2022 2022, pp. 1776-1781, doi: 10.1109/ICSP54964.2022.9778531. [DOI:10.1109/ICSP54964.2022.9778531]
26. C. Cao et al., "Research on Airplane and Ship Detection of Aerial Remote Sensing Images Based on Convolutional Neural Network," Sensors, vol. 20, no. 17, p. 4696, 2020. [Online]. Available: https://www.mdpi.com/1424-8220/20/17/4696. [DOI:10.3390/s20174696]
27. Z. Li, A. Namiki, S. Suzuki, Q. Wang, T. Zhang, and W. Wang, "Application of Low-Altitude UAV Remote Sensing Image Object Detection Based on Improved YOLOv5," Applied Sciences, vol. 12, no. 16, p. 8314, 2022. [Online]. Available: https://www.mdpi.com/2076-3417/12/16/8314. [DOI:10.3390/app12168314]
28. Z. Wang, H. Lu, J. Jin, and K. Hu, "Human Action Recognition Based on Improved Two-Stream Convolution Network," Applied Sciences, vol. 12, no. 12, p. 5784, 2022. [DOI:10.3390/app12125784]
29. S. Woo, J. Park, J.-Y. Lee, and I. S. Kweon, "Cbam: Convolutional block attention module," in Proceedings of the European conference on computer vision (ECCV), 2018, pp. 3-19. [DOI:10.1007/978-3-030-01234-2_1]
30. L. Yang, G. Yuan, H. Zhou, H. Liu, J. Chen, and H. Wu, "RS-YOLOX: A High-Precision Detector for Object Detection in Satellite Remote Sensing Images," Applied Sciences, vol. 12, no. 17, p. 8707, 2022. [Online]. Available: https://www.mdpi.com/2076-3417/12/17/8707. [DOI:10.3390/app12178707]
31. Q. Wang, B. Wu, P. Zhu, P. Li, W. Zuo, and Q. Hu, "ECA-Net: Efficient channel attention for deep convolutional neural networks," in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp. 11534-11542. [DOI:10.1109/CVPR42600.2020.01155]
32. F. C. Akyon, S. O. Altinuc, and A. Temizel, "Slicing aided hyper inference and fine-tuning for small object detection," in 2022 IEEE International Conference on Image Processing (ICIP), 2022: IEEE, pp. 966-970. [DOI:10.1109/ICIP46576.2022.9897990]
33. T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie, "Feature pyramid networks for object detection," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2017, pp. 2117-2125. [DOI:10.1109/CVPR.2017.106]
34. J. Yang, X. Fu, Y. Hu, Y. Huang, X. Ding, and J. Paisley, "PanNet: A Deep Network Architecture for Pan-Sharpening," in 2017 IEEE International Conference on Computer Vision (ICCV), 22-29 Oct. 2017 2017, pp. 1753-1761, doi: 10.1109/ICCV.2017.193. [DOI:10.1109/ICCV.2017.193]
35. K. He, X. Zhang, S. Ren, and J. Sun, "Spatial pyramid pooling in deep convolutional networks for visual recognition," IEEE transactions on pattern analysis and machine intelligence, vol. 37, no. 9, pp. 1904-1916, 2015. [DOI:10.1109/TPAMI.2015.2389824]
36. S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia, "Path aggregation network for instance segmentation," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 8759-8768. [DOI:10.1109/CVPR.2018.00913]
ارسال پیام به نویسنده مسئول

ارسال نظر درباره این مقاله
نام کاربری یا پست الکترونیک شما:

CAPTCHA



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

ebrahimi A, Garousi A, hosseini naveh A, _mohammadzadeh A. Improving the YOLOv5 Deep Neural Network for Detecting Vehicles and Outdoor Pools from Drone Data. JGST 2023; 13 (1) : 7
URL: http://jgst.issgeac.ir/article-1-1144-fa.html

ابراهیمی آیدین، گروسی امیررضا، حسینی نوه علی، محمدزاده علی. بهبود شبکه یادگیری عمیق YOLOv5 برای شناسایی خودرو و استخرهای روباز با استفاده از تصاویر پهپادی. علوم و فنون نقشه برداری. 1402; 13 (1) :83-97

URL: http://jgst.issgeac.ir/article-1-1144-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 13، شماره 1 - ( 6-1402 ) برگشت به فهرست نسخه ها
نشریه علمی علوم و فنون نقشه برداری Journal of Geomatics Science and Technology