Nowadays, extracting knowledge from voluminous and distributed spatial data is a vital need and ultimate goal of spatial data community. In this regard, a number of spatial data mining methods and algorithms have been developed, but there are a number of reasons these methods could not be cover spatial data community requirements. Like early years of GIS development, collecting data on a repository is still applied for knowledge extraction. In adaption, interoperability and usability are two important issues that have been neglected in traditional knowledge extraction methods. To respond the requirements from knowledge perspective a set of Web service-based geographical knowledge extraction is necessary. The services required a technological infrastructure or framework to extract useful knowledge from the different and geographically distributed data sources. In order to overcome this challenges, a general Spatial Knowledge Infrastructure (SKI) proposed to facilitate knowledge extraction in distributed scenarios. The SKI is a widespread interoperable framework through which geographical/spatial knowledge is created, organized, shared, managed and used in many domains. It creates a mechanism to make the necessary processes of geographic knowledge with the highest efficiency and usability. SKI's primary goal is to combine Spatial Data Infrastructure (SDI), Spatial Web Services (SWS) and Spatial Data Mining (SDM) concepts to facilitate geographical knowledge extraction as a collection of services. With a combination of SDI, SWS and SDM concepts this study presents the nature of SKI, including definition, levels, components, and architecture. |
1. Toomanian, A. (2012) Methods to Improve and Evaluate Spatial Data Infrastructures. Lund University, Sweden. Available at: http://www.lunduniversity.lu.se/lup/publication/40d93fc-98ca-4f12-becd-a0e8d25c9048. 2. Li, D., Wang, S. and Li, D. (2016) Spatial data mining : theory and application. Available at: http://www.springer.com/us/book/9783662485361 (Accessed: 28 August 2017). 3. Talia, D. and Trunfio, P. (2013) Service-oriented distributed knowledge discovery. CRC Press. [ DOI:10.1201/b12990] 4. Longley, P. A., Goodchild, M. F., Maguire, D. J., & Rhind, D. W. (2015). Geographic information science and systems. John Wiley & Sons. 5. Omidipoor, M., Toomanian, A., & Samani, N. N. (2018, June). Towards Spatial Knowledge Infrastructure (SKI): Technological Understanding. In Proceedings of the 21st AGILE International Conference on Geographic Information Science, Lund, Sweden (pp. 12-15). 6. Miller, H. J., & Han, J. (2009). Geographic data mining and knowledge discovery. CRC press. [ DOI:10.1201/9781420073980] 7. Rajabifard, A., Feeney, M.-E. F. and Williamson, I. P. (2002) 'Future directions for SDI', International Journal of Applied Earth Observation and Geoinformation. Elsevier, 4(1), pp. 11-22. [ DOI:10.1016/S0303-2434(02)00002-8] 8. Williamson, I. P., Rajabifard, A. and Feeney, M.-E. F. (2003) Developing spatial data infrastructures : from concept to reality. Taylor & Francis. [ DOI:10.1201/9780203485774] 9. Mansourian, A., Rajabifard, A., Valadan-Zoje, M. and Williamson, I. (2006) 'using SDI and web-based system to facitilate disaster management', Computers & Geosciences, 32(3), pp. 303-315. doi: http://dx.doi.org/10.1016/j.cageo.2005.06.017. [ DOI:10.1016/j.cageo.2005.06.017] 10. Kargupta, H. (2009) Next generation of data mining. CRC Press. [ DOI:10.1201/9781420085877] 11. Li, S., Dragićević, S. and Veenendaal, B. (2011) Advances in web-based GIS, mapping services and applications. CRC Press/Balkema. [ DOI:10.1201/b15452] 12. Yue, P. (2013) Semantic web-based intelligent geospatial web services, springer. Available at: http://link.springer.com/content/pdf/10.1007/978-1-4614-6809-7.pdf. 13. Li, S., Dragicevic, S., Castro, F. A., Sester, M., Winter, S., Coltekin, A., ... & Cheng, T. (2016). Geospatial big data handling theory and methods: A review and research challenges. ISPRS journal of Photogrammetry and Remote Sensing, 115, 119-133. [ DOI:10.1016/j.isprsjprs.2015.10.012] 14. Dalkir, K. (2013). Knowledge management in theory and practice: Routledge. [ DOI:10.4324/9780080547367] 15. Easterby-Smith, M., & Lyles, M. A. (Eds.). (2011). Handbook of organizational learning and knowledge management. John Wiley & Sons. 16. Rubenstein-Montano, B., Liebowitz, J., Buchwalter, J., McCaw, D., Newman, B., Rebeck, K., & Team, T. K. M. M. (2001). A systems thinking framework for knowledge management. Decision support systems, 31(1), 5-16. [ DOI:10.1016/S0167-9236(00)00116-0] 17. Zhong, N. and Zhou, L. (1999) Methodologies for knowledge discovery and data mining : Third Pacific-Asia Conference, PAKDD-99, Beijing, China, April 26-28, 1999 : proceedings. Springer. [ DOI:10.1007/3-540-48912-6] 18. Omidipoor, M., Toomanian, A., Neysani Samany, N., & Mansourian, A. (2020). Knowledge discovery web service for spatial data infrastructures. ISPRS International Journal of Geo-Information, 10(1), 12. [ DOI:10.3390/ijgi10010012] 19. Alkathiri, M., Jhummarwala, A., & Potdar, M. B. (2019). Multi-dimensional geospatial data mining in a distributed environment using MapReduce. Journal of Big Data, 6(1), 82. [ DOI:10.1186/s40537-019-0245-9] 20. Li, Z., Gui, Z., Hofer, B., Li, Y., Scheider, S., & Shekhar, S. (2020). Geospatial information processing technologies. Manual of digital earth, 191-227. [ DOI:10.1007/978-981-32-9915-3_6] 21. Jo, J., & Lee, K. W. (2018). High-performance geospatial big data processing system based on MapReduce. ISPRS International Journal of Geo-Information, 7(10), 399. [ DOI:10.3390/ijgi7100399]
|