1. Gordis L. (2004) Epidemology, 3rd edition, Saunders. 2. Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, Hu Y, Tao ZW, Tian JH, Pei YY, Yuan ML, Zhang YL, Dai FH, Liu Y, Wang QM, Zheng JJ, Xu L, Holmes EC, Zhang YZ. (2020), Author Correction: A new coronavirus associated with human respiratory disease in China. Nature. 2020 Apr; 580(7803):E7. doi: 10.1038/s41586-020-2202-3. Erratum for: Nature. 2020 Mar; 579(7798):265-269. PMID: 32296181; PMCID: PMC7608129. [ DOI:10.1038/s41586-020-2202-3] 3. Cromly E.K., McLafferty S.L. (2011), GIS and Public Health, 2nd Edition 2nd Edition, The Guilford Press.. 4. Malek M.R . Pileh Forooshha P.(2015), A Comparison between Traditional and Intuitionistic Fuzzy Logic for Vulnerability Mapping Under Uncertainty, Emergency Management, 3(2), P. 5-13. (In Persian) 5. Pouladi, M., Entezari, M., Hashemi M., Bahonar A., Hushmandi K., Raei, M. (2020). Investigating the Efficient Management of Different Countries in the COVID-19 Pandemic. JOURNAL OF MARINE MEDICINE, 2(1 ), 18-25. SID. https://sid.ir/paper/408367/en 6. Zadeh L.., Aliev R.A. (2018), Adaptive Neuro-Fuzzy Inference Systems (ANFISs), Chapter 16 of Fuzzy Logic Theory and Applications, World Scientific. [ DOI:10.1142/10936] 7. Mollalo, A., B. Vahedi, and K.M. Rivera, GIS-based spatial modeling of COVID-19 incidence rate in the continental United States (2020). Science of the total environment, 728: p. 138884. [ DOI:10.1016/j.scitotenv.2020.138884] 8. Xie Z, Qin Y, Li Y, Shen W, Zheng Z, Liu S. (2020), Spatial and temporal differentiation of COVID-19 epidemic spread in mainland China and its influencing factors. Sci Total Environ. 2020 Nov 20;744:140929. [ DOI:10.1016/j.scitotenv.2020.140929] 9. Andersen LM, Harden SR, Sugg MM, Runkle JD (2021), Lundquist TE. Analyzing the spatial determinants of local Covid-19 transmission in the United States. Sci Total Environ. 2021 1;754:142396. [ DOI:10.1016/j.scitotenv.2020.142396] 10. Han Y, Yang L, Jia K, Li J, Feng S, Chen W, Zhao W, Pereira P. (2021), Spatial distribution characteristics of the COVID-19 pandemic in Beijing and its relationship with environmental factors. Sci Total Environ. 20;761:144257 [ DOI:10.1016/j.scitotenv.2020.144257] 11. Laroze, D., E. Neumayer, and T. Plümper, (2021), COVID-19 does not stop at open borders: Spatial contagion among local authority districts during England's first wave. Social Science & Medicine, 270: p. 113655. [ DOI:10.1016/j.socscimed.2020.113655] 12. Hamidur R., Zafri M.N.,, Ashik F.R. , Waliullah M. (2020), GIS-based spatial modeling to identify factors affecting COVID-19 incidence rates in Bangladesh, medRxiv 2020.08.16.20175976. 13. Kodera, S., E.A. Rashed, and A. (2020), Hirata, Correlation between COVID-19 morbidity and mortality rates in Japan and local population density, temperature, and absolute humidity. International journal of environmental research and public health, 17(15): p. 54-77. [ DOI:10.3390/ijerph17155477] 14. Manzak, D. and A. Manzak, (2020), Analysis of environmental, economic, and demographic factors affecting Covid-19 transmission and associated deaths in the USA. Economic, and Demographic Factors Affecting COVID-19 Transmission and Associated Deaths in the USA. [ DOI:10.2139/ssrn.3644677] 15. Rashed EA, Kodera S, Gomez-Tames J, Hirata A. (2020), Influence of Absolute Humidity, Temperature and Population Density on COVID-19 Spread and Decay Durations: Multi-Prefecture Study in Japan. Int J Environ Res Public Health. 17(15):5354. [ DOI:10.3390/ijerph17155354] 16. Zhang, Y.,Li Y., Yang B., Zheng X. (2020), Risk assessment of COVID-19 based on multisource data from a geographical viewpoint. IEEE Access, 2020. 8: p. 125702-125713. [ DOI:10.1109/ACCESS.2020.3004933] 17. Kong, J.D., E.W. Tekwa, and S.A. Gignoux-Wolfsohn,(2021), Social, economic, and environmental factors influencing the basic reproduction number of COVID-19 across countries. PloS one, 16(6): p. e0252373. [ DOI:10.1371/journal.pone.0252373] 18. Fatholahi, S.N., et al., SPATIAL MODELLING OF COVID-19 INCIDENCE RATE IN CANADA. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2022. 43: p. 111-116. [ DOI:10.5194/isprs-archives-XLIII-B4-2022-111-2022] 19. Mollalo, A., K.M. Rivera, and B. Vahedi,(2020). Artificial neural network modeling of novel coronavirus (COVID-19) incidence rates across the continental United States. International journal of environmental research and public health, 17(12): p. 4204. [ DOI:10.3390/ijerph17124204] 20. Nasiri R, Akbarpour S, Zali AR, Khodakarami N, Boochani MH, Noory AR, Soori H. (2022), Spatio-temporal analysis of COVID-19 incidence rate using GIS: a case study-Tehran metropolitan,. GeoJournal.v87(4):3291-3305 [ DOI:10.1007/s10708-021-10438-x] 21. Kianfar, N. and M.S. Mesgari, (2022), GIS-based spatio-temporal analysis and modeling of COVID-19 incidence rates in Europe. Spatial and Spatio-temporal Epidemiology, 41: p. 100498. [ DOI:10.1016/j.sste.2022.100498] 22. Kotov E.A., Goncharov R.V., Kulchitsky Y.V., Molodtsova V. A., Nikitin B.V. (2020), Spatial Modelling of Key Regional-Level Factors of Covid-19 Mortality In Russia. Geography, Environment, Sustainability, 15(2): p. 71-83. [ DOI:10.24057/2071-9388-2021-076] 23. Ma, J., Haihong Z., Peng L., Chengcheng L., Feng L., Zhenwei L., Meihui Z., Lin L., (2022), Spatial Patterns of the Spread of COVID-19 in Singapore and the Influencing Factors, ISPRS International Journal of Geo-Information ; 11(3), p.152, [ DOI:10.3390/ijgi11030152] 24. Lak A, Sharifi A, Badr S, Zali A, Maher A, Mostafavi E, Khalili D. (2021), Spatio-temporal patterns of the COVID-19 pandemic, and place-based influential factors at the neighborhood scale in Tehran. Sustain Cities Soc. Sep;72:103034. [ DOI:10.1016/j.scs.2021.103034] 25. Cao W, Chen C, Li M, Nie R, Lu Q, Song D, Li S, Yang T, Liu Y, Du B, Wang X. (2021), Important factors affecting COVID-19 transmission and fatality in metropolises. Public Health. Jan;190:e21-e23. [ DOI:10.1016/j.puhe.2020.11.008] 26. Khan, S.D., L. Alarabi, and S. Basalamah, Toward smart lockdown: a novel approach for COVID-19 hotspots prediction using a deep hybrid neural network. Computers, 2020. 9(4): p. 99. [ DOI:10.3390/computers9040099] 27. Fang, H., L. Wang, and Y. Yang, Human mobility restrictions and the spread of the novel coronavirus (2019-nCoV) in China. Journal of Public Economics, 2020. 191: p. 104272. [ DOI:10.1016/j.jpubeco.2020.104272] 28. O'Donoghue, A., Dechen, T., Pavlova, W. (2021). Reopening businesses and risk of COVID-19 transmission. npj Digit. Med. 4, 51. [ DOI:10.1038/s41746-021-00420-9] 29. Choi, K., H. Choi, and B. Kahng, (2022), Covid-19 epidemic under the K-quarantine model: Network approach. Chaos, Solitons & Fractals,157: p. 111904. [ DOI:10.1016/j.chaos.2022.111904] 30. Ladha, R.S. (2020), Coronavirus: A framework to decide between national and local lockdown. Journal of Health Management, 2020. 22(2): p. 215-223. [ DOI:10.1177/0972063420935546] 31. Fontán-Vela, M., P. Gullón, and J. Padilla-Bernáldez (2021), Selective perimeter lockdowns in Madrid: a way to bend the COVID-19 curve? European Journal of Public Health, 31(5): p. 1102-1104. [ DOI:10.1093/eurpub/ckab061] 32. Li Y., Undurraga E.A, Zubizarreta J.R. (2022), Effectiveness of Localized Lockdowns in the COVID-19 Pandemic. Am J Epidemiol. Mar 24;191(5):812-824 [ DOI:10.1093/aje/kwac008] 33. Jang, J.-S., Sun C.-T., Mizutani and E., (1997), Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence, Pearson College Div; [ DOI:10.1109/TAC.1997.633847] 34. IRNA.ir (Retrieved: Dec. 2023), https://www.irna.ir/news/83682059/%DA%A9%D8%B1%D9%88%D9%86%D8%A7-%D8%AF%D8%B1-%D9%82%D9%85-%D9%87%D9%85%D9%87-%DA%86%DB%8C%D8%B2-%D8%A7%D8%B2-%DB%8C%DA%A9-%D8%A2%D8%B2%D9%85%D8%A7%DB%8C%D8%B4-%D8%B4%D8%B1%D9%88%D8%B9-%D8%B4%D8%AF
|