1. P. Biber, H. Andreasson, T. Duckett, and A. Schilling, "3D modeling of indoor environments by a mobile robot with a laser scanner and panoramic camera," in 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566), 2004, vol. 4, pp. 3430-3435. 2. Y. Shi et al., "Fusion of a panoramic camera and 2D laser scanner data for constrained bundle adjustment in GPS-denied environments," Image Vis. Comput., vol. 40, pp. 28-37, 2015. [ DOI:10.1016/j.imavis.2015.06.002] 3. A. Kanezaki, T. Suzuki, T. Harada, and Y. Kuniyoshi, "Fast object detection for robots in a cluttered indoor environment using integral 3D feature table," in 2011 IEEE International Conference on Robotics and Automation, 2011, pp. 4026-4033. [ DOI:10.1109/ICRA.2011.5980129] 4. C. Wen, L. Qin, Q. Zhu, C. Wang, and J. Li, "Three-dimensional indoor mobile mapping with fusion of two-dimensional laser scanner and RGB-D camera data," IEEE Geosci. Remote Sens. Lett., vol. 11, no. 4, pp. 843-847, 2013. [ DOI:10.1109/LGRS.2013.2279872] 5. G. Li, Y. Liu, L. Dong, X. Cai, and D. Zhou, "An algorithm for extrinsic parameters calibration of a camera and a laser range finder using line features," in 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007, pp. 3854-3859. 6. S. Wasielewski and O. Strauss, "Calibration of a multi-sensor system laser rangefinder/camera," in Proceedings of the Intelligent Vehicles' 95. Symposium, 1995, pp. 472-477. 7. S. Sim, J. Sock, and K. Kwak, "Indirect correspondence-based robust extrinsic calibration of LiDAR and camera," Sensors (Switzerland), vol. 16, no. 6, 2016, doi: 10.3390/s16060933. [ DOI:10.3390/s16060933] [ PMID] [ PMCID] 8. Z. Chen, L. Zhuo, K. Sun, and C. Zhang, "Extrinsic calibration of a camera and a laser range finder using point to line constraint," Procedia Eng., vol. 29, pp. 4348-4352, 2012. [ DOI:10.1016/j.proeng.2012.01.669] 9. R. Gomez-Ojeda, J. Briales, E. Fernandez-Moral, and J. Gonzalez-Jimenez, "Extrinsic calibration of a 2d laser-rangefinder and a camera based on scene corners," in 2015 IEEE International Conference on Robotics and Automation (ICRA), 2015, pp. 3611-3616. [ DOI:10.1109/ICRA.2015.7139700] 10. Z. Hu, Y. Li, N. Li, and B. Zhao, "Extrinsic calibration of 2-D laser rangefinder and camera from single shot based on minimal solution," IEEE Trans. Instrum. Meas., vol. 65, no. 4, pp. 915-929, 2016. [ DOI:10.1109/TIM.2016.2518248] 11. F. Shi, X. Zhang, and Y. Liu, "A new method of camera pose estimation using 2D-3D corner correspondence," Pattern Recognit. Lett., vol. 25, no. 10, pp. 1155-1163, 2004. [ DOI:10.1016/j.patrec.2004.03.010] 12. L. Zhang, C. Xu, K.-M. Lee, and R. Koch, "Robust and efficient pose estimation from line correspondences," in Asian Conference on Computer Vision, 2012, pp. 217-230. [ DOI:10.1007/978-3-642-37431-9_17] 13. J. Fan, Y. Huang, J. Shan, S. Zhang, and F. Zhu, "Extrinsic calibration between a camera and a 2D laser rangefinder using a photogrammetric control field," Sensors, vol. 19, no. 9, p. 2030, 2019. [ DOI:10.3390/s19092030] [ PMID] [ PMCID] 14. Q. Zhang and R. Pless, "Extrinsic calibration of a camera and laser range finder (improves camera calibration)," in 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566), 2004, vol. 3, pp. 2301-2306. 15. A. Kassir and T. Peynot, "Reliable automatic camera-laser calibration," in Proceedings of the 2010 Australasian Conference on Robotics & Automation, 2010, pp. 1-10. 16. L. Zhou, "A new minimal solution for the extrinsic calibration of a 2D LIDAR and a camera using three plane-line correspondences," IEEE Sens. J., vol. 14, no. 2, pp. 442-454, 2013. [ DOI:10.1109/JSEN.2013.2284789] 17. F. Vasconcelos, J. P. Barreto, and U. Nunes, "A minimal solution for the extrinsic calibration of a camera and a laser-rangefinder," IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 11, pp. 2097-2107, 2012. [ DOI:10.1109/TPAMI.2012.18] [ PMID] 18. F. Itami and T. Yamazaki, "An improved method for the calibration of a 2-D LiDAR with respect to a camera by using a checkerboard target," IEEE Sens. J., vol. 20, no. 14, pp. 7906-7917, 2020. [ DOI:10.1109/JSEN.2020.2980871] 19. A. H. A. Mohammadamin Manouchehri, "Extrinsic Calibration between a rotating Laser Rangefinder and a Camera using a Photogrammetric Control Field and Ping Pong balls," J. Geomatics Sci. Technol. persian, 2022. 20. M. A. Manouchehri and A. H. Ahmadabadian, "Extrinsic Calibration of Rotating 2D Laser Range Finder and Camera Using Photogrammetric Test Field and Ping Pong Balls," ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci., vol. 10, no. 4/W1-2022, pp. 475-481, 2023, doi: 10.5194/isprs-annals-X-4-W1-2022-475-2023. [ DOI:10.5194/isprs-annals-X-4-W1-2022-475-2023] 21. A. H. A. Mohammadamin Manouchehri, "Extrinsic Calibration of a Camera and a 2D Laser Range Finder Using Ping Pong Balls and the Corner of a Room," Submitt. to "Measurement," 2023. [ DOI:10.2139/ssrn.4123031] 22. M. A. Abbas, D. D. Lichti, A. K. Chong, H. Setan, and Z. Majid, "An on-site approach for the self-calibration of terrestrial laser scanner," Measurement, vol. 52, pp. 111-123, 2014. [ DOI:10.1016/j.measurement.2014.03.009] 23. C. S. Fraser, "Digital camera self-calibration," ISPRS J. Photogramm. Remote Sens., vol. 52, no. 4, pp. 149-159, 1997. [ DOI:10.1016/S0924-2716(97)00005-1] 24. S. Cronk, C. Fraser, and H. Hanley, "Automated metric calibration of colour digital cameras," Photogramm. Rec., vol. 21, no. 116, pp. 355-372, 2006, doi: 10.1111/j.1477-9730.2006.00380.x. [ DOI:10.1111/j.1477-9730.2006.00380.x] 25. F. Itami and T. Yamazaki, "A simple calibration procedure for a 2D LiDAR with respect to a camera," IEEE Sens. J., vol. 19, no. 17, pp. 7553-7564, 2019. [ DOI:10.1109/JSEN.2019.2915991] 26. L. Zhou and Z. Deng, "Extrinsic calibration of a camera and a lidar based on decoupling the rotation from the translation," in 2012 IEEE Intelligent Vehicles Symposium, 2012, pp. 642-648. [ DOI:10.1109/IVS.2012.6232233] 27. B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon, "Bundle adjustment-a modern synthesis," in International workshop on vision algorithms, 1999, pp. 298-372. [ DOI:10.1007/3-540-44480-7_21] 28. "ROS: Home." https://www.ros.org/ (accessed Mar. 24, 2022). 29. "GOM Inspect." https://www.gom-inspect.com/ (accessed Mar. 24, 2022). 30. "Australis - Photometrix Photogrammetry Software." https://www.photometrix.com.au/australis/ (accessed Mar. 24, 2022).
|