1. Beasley, D., Bull, D. R., & Martin, R. R. (1993). An overview of genetic algorithms: Part 1, fundamentals. University computing, 15(2), 56-69. 2. Benavent, E., Landete, M., Mota, E., & Tirado, G. (2015). The multiple vehicle pickup and delivery problem with LIFO constraints. European Journal of Operational Research, 243(3), 752-762. [ DOI:10.1016/j.ejor.2014.12.029] 3. Dantzig, G., Fulkerson, R., & Johnson, S. (1954). Solution of a large-scale traveling-salesman problem. Journal of the operations research society of America, 2(4), 393-410. [ DOI:10.1287/opre.2.4.393] 4. Dantzig, G. B., & Fulkerson, D. R. (1954). Minimizing the number of tankers to meet a fixed schedule. Naval Research Logistics Quarterly, 1(3), 217-222. [ DOI:10.1002/nav.3800010309] 5. Davoodi, M., Malekpour Golsefidi, M., & Mesgari, M. S. (2019). A HYBRID OPTIMIZATION METHOD FOR VEHICLE ROUTING PROBLEM USING ARTIFICIAL BEE COLONY AND GENETIC ALGORITHM. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences. [ DOI:10.5194/isprs-archives-XLII-4-W18-293-2019] 6. D'Souza, C., Omkar, S. N., & Senthilnath, J. (2012). Pickup and delivery problem using metaheuristics techniques. Expert Systems with Applications, 39(1), 328-334. [ DOI:10.1016/j.eswa.2011.07.022] 7. Eksioglu, B., Vural, A. V., & Reisman, A. (2009). The vehicle routing problem: A taxonomic review. Computers & Industrial Engineering, 57(4), 1472-1483. [ DOI:10.1016/j.cie.2009.05.009] 8. Fan, J. (2011). The vehicle routing problem with simultaneous pickup and delivery based on customer satisfaction. Procedia Engineering, 15, 5284-5289. [ DOI:10.1016/j.proeng.2011.08.979] 9. Goksal, F. P., Karaoglan, I., & Altiparmak, F. (2013). A hybrid discrete particle swarm optimization for vehicle routing problem with simultaneous pickup and delivery. Computers & Industrial Engineering, 65(1), 39-53. [ DOI:10.1016/j.cie.2012.01.005] 10. Golberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning. Addion wesley, 1989(102), 36. 11. Grimault, A., Bostel, N., & Lehuédé, F. (2017). An adaptive large neighborhood search for the full truckload pickup and delivery problem with resource synchronization. Computers & Operations Research, 88, 1-14. [ DOI:10.1016/j.cor.2017.06.012] 12. Mao-xiang, L. A. N. G. (2005). Study on simulated annealing algorithm for vehicle routing problem with backhauls [J]. Journal of systems engineering, 5. 13. Masson, R., Lehuédé, F., & Péton, O. (2013). An adaptive large neighborhood search for the pickup and delivery problem with transfers. Transportation Science, 47(3), 344-355. [ DOI:10.1287/trsc.1120.0432] 14. Naccache, S., Côté, J. F., & Coelho, L. C. (2018). The multi-pickup and delivery problem with time windows. European Journal of Operational Research, 269(1), 353-362. [ DOI:10.1016/j.ejor.2018.01.035] 15. Sivanandam, S. N., & Deepa, S. N. (2007). Introduction to Genetic Algorithms. Springer, Berlin Heidelberg. 16. Tajik, N., Tavakkoli-Moghaddam, R., Vahdani, B., & Mousavi, S. M. (2014). A robust optimization approach for pollution routing problem with pickup and delivery under uncertainty. Journal of Manufacturing Systems, 33(2), 277-286. [ DOI:10.1016/j.jmsy.2013.12.009] 17. Toth, P., & Vigo, D. (Eds.). (2014). Vehicle routing: problems, methods, and applications. Society for Industrial and Applied Mathematics. [ DOI:10.1137/1.9781611973594] 18. Wang, H. F., & Chen, Y. Y. (2012). A genetic algorithm for the simultaneous delivery and pickup problems with time window. Computers & Industrial Engineering, 62(1), 84-95. [ DOI:10.1016/j.cie.2011.08.018] 19. Van Zuylen, H. J., & Willumsen, L. G. (1980). The most likely trip matrix estimated from traffic counts. Transportation Research Part B: Methodological, 14(3), 281-293. [ DOI:10.1016/0191-2615(80)90008-9]
|