1. Amiri. A. H.. Ranjbar. H.. and Honarmand. M.. 2005. Application of remote sensing techniques in alluvial sampling design for exploration of placer deposits in the semi-arid areas. Map India Geomatics 2. Andrew. R. L. 1980. Supergene alteration and gossan textures of base-metal ores in Southern Africa. Minerals Science and Engineering, 12(4):193-215. 3. Andrew. R. L. 2000. Short Course in Evaluation of Gossans in Mineral Exploration. ADIMB, Brasilia, 57 pp. 4. Beiranvand Pour. and A.. Hashim. M.. 2012. The application of ASTER remote sensing data to porphyry copper and epithermal gold deposits. Ore Geology Reviews, 44 (2012) 1-9. [ DOI:10.1016/j.oregeorev.2011.09.009] 5. Beiranvand Pour. A.. Hashim. M.. and Marghany. M.. 2013. Exploration of gold mineralization in a tropical region using Earth Observing-1 (EO1) and JERS-1 SAR data: a case study from Bau gold field, Sarawak, Malaysia. Arab J Geosci 7, 2393-2406. [ DOI:10.1007/s12517-013-0969-3] 6. Bhadra. B. K.. Kumar. A.. Karunakar.G.. Meena. H.. Rehpade. B.. and Srinivasa Rao. S.. 2021. Integrated remote sensing and geophysical techniques for shallow base metal deposits (Zn, Pb, Cu) below the gossan zone at Kalabar, Western Aravalli Belt, India. Journal of Applied Geophysics, 191. 104365. [ DOI:10.1016/j.jappgeo.2021.104365] 7. Blain. C. F.. and Andrew. R. L.. 1977. Sulphide weathering and themineral evaluation of gossans in mineral exploration. Minerals Science and Engineering, 9(3):119-150. 8. Blanchard. R., 1968. Interpretation of Leached Outcrops. Nevada Bureau of Mines and Geology, 66 pp. 9. Boyle. D. R. 1996. Supergene base metals and precious metals. In: Eckstrand. O.R.. Sinclair. W.D.. and Thorpe. R.I. (Editors), Geology of Canadian mineral deposit types. Geologic Survey of Canada, pp. 92-108. 10. Essalhi. M.. Sizaret. S.. Barbanson. L.. Chen. Y.. Lagroix. F.. Demory. F.. Nieto. J.M.. Saez. R.. and Capitan. M.A.. 2011. A case study of the internal structures of gossans and weathering processes in the Iberian Pyrite Belt using magnetic fabrics and paleomagnetic dating. Mineralium Deposita, 46(8):981-999. [ DOI:10.1007/s00126-011-0361-8] 11. Gahlan. H.. and Ghrefat. H.. 2018. Detection of Gossan Zones in Arid Regions Using Landsat 8 OLI Data: Implication for Mineral Exploration in the Eastern Arabian Shield, Saudi Arabia. Natural Resources Research, 27(1):109-124. [ DOI:10.1007/s11053-017-9341-8] 12. Hannington. M. D.. Thompson. G.. Rona. P. A.. and Scott. S. D.. 1988. Gold and native copper in supergene sulphides from the Mid-Atlantic Ridge. Nature, 333: 64-66. [ DOI:10.1038/333064a0] 13. Ioffe. S.. and Szegedy. C.. 2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift, arXiv preprint arXiv:1502.03167. 14. Karimpour. M. H.. Malekzadeh Shafaroudi.A.. Esfandiarpour. A.. and Mohammadnezhad. H.. 2012. Neyshabour turquoise mine: the first Iron Oxide Cu-Au-U-LREE (IOCG) mineralized system in Iran. Journal of Economic Geology, 3(2), 193-216. 15. LeCun. Y.. Bengio. Y.. and Hinton. G.. 2015.Deeplearning, Nature, vol. 521, pp. 436-444. [ DOI:10.1038/nature14539] 16. Ozdemir. A.. and Sahinoglu. A.. 2018. Important of Gossans in Mineral Exploration: A Case Study in Northern Turkey. Int J Earth Sci Geophys, 4:019. [ DOI:10.35840/2631-5033/1819] 17. Phung. S. L.. and Bouzerdoum. A.. 2009. MATLAB Library for Convolutional Neural Networks, Technical Report‖, Visual and Audio Signal Processing Lab, University of Wollongong. 18. Pirouei. M.. Kolo. K.. and Kalaitzidisc. S. P.. 2020. Hydrothermal listvenitization and associated mineralizations in Zagros Ophiolites: implications for mineral exploration in Iraqi Kurdistan. Journal of Geochemical Exploration, 208. 106405. [ DOI:10.1016/j.gexplo.2019.106404] 19. Rajendran. S.. and Nasir. S.. 2017. Characterization of ASTER spectral bands for mapping of alteration zones of volcanogenic massive sulphide deposits. Ore Geology Reviews, 88:317-335. [ DOI:10.1016/j.oregeorev.2017.04.016] 20. Scott. K. M.. Ashley. P.M.. and Lawie. D. C.. 2001. The geochemistry, mineralogy and maturity of gossans derived from volcanogenic Zn-Pb-Cu deposits of the eastern Lachlan Fold Belt, NSW, Australia. Journal of Geochemical exploration, 72(3):169-191. [ DOI:10.1016/S0375-6742(01)00159-5] 21. Sherlock. R. L.. and Barrett. T. J.. 2004. Geology and volcanic stratigraphy of the Canatuan and Malusok volcanogenic massive sulfide deposits, southwestern Mindanao, Philippines. Mineralium Deposita, 39(1):1-20. [ DOI:10.1007/s00126-003-0350-7] 22. Taylor. G. F.. 1987. Gossan and Ironstone Evaluation in Mineral Exploration. Brazilian Geochemistry Society, Rio de Janeiro, 140 pp. 23. Törmänen. T. O.. and Koski. R. A.. 2005. Gold enrichment and the Bi-Au association in pyrrhotite-rich massive sulfide deposits, Escanaba Trough, southern Gorda Ridge. Economic Geology, 100(6):1135- 1150. [ DOI:10.2113/gsecongeo.100.6.1135] 24. Wager. S.. Wang. S.. and Liang. P. S.. 2013. Dropout training as adaptive regularization. Advances in neural information processing systems, pp. 351-359. 25. Wilhelm. E. K.. and Kosakevitch. A.. 1979. Utilisation des chapeaux de fer comme guide de prospection. Geólogie des gites minéraux, 2(3):109-140. 26. Wilmshurst. J. R.. and Fisher. N. I.. 1983. Classification scheme of gossans. In: Smith. R.E. (Editor), Geochemical Exploration in Deeply Weathered Terrain. CSIRO Division of Mineralogy, Floreat Park, Western Australia, pp. 104-106.
|