در این مقاله از یک شبکه عصبی مصنوعی (ANN) 3 لایه با 18 نورون در لایه مخفی جهت مدلسازی سری زمانی تغییرات محتوای الکترون کلی (TEC) لایه یونسفر در منطقه ایران استفاده شده است. مشاهدات 36 ایستگاه GPS در 11 روز متوالی (روز 220 GPS الی روز 230 GPS) از سال 2012 جهت مدلسازی بکار گرفته شده است. جهت سرعت بخشیدن به مرحله آموزش و نیز بالا بردن دقت و صحت نتایج از الگوریتم آموزش بهینهسازی انبوه ذرات (PSO) استفاده شده است. اعتبارسنجی نتایج حاصل از روش با مشاهدات سیستم تعیین موقعیت جهانی (GPS) انجام گرفته است. همچنین نتایج بدست آمده از شبکه عصبی در پنج ایستگاه آزمون با نتایج حاصل از مدل مرجع بینالمللی 2012 (IRI-2012) و روش درونیابی کریجینگ فراگیر مورد مقایسه قرار گرفته است. آنالیز نتایج بدست آمده حاکی از سرعت بالای الگوریتم آموزش PSO در همگرایی به جواب بهینه میباشد. جهت ارزیابی خطای مدل شبکه عصبی از شاخص dVTEC که از اختلاف مابین TEC حاصل از اندازهگیریهای GPS و TEC حاصل از مدل محاسبه میگردد، استفاده شده است. کمینه این شاخص در 11 روز مورد مطالعه برای سه مدل شبکه عصبی، IRI-2012 و کریجینگ فراگیر بترتیب برابر با 55/0، 57/1 و 70/0 TECU و بیشینه آن بترتیب برابر با 45/5، 16/7 و 51/5 TECU محاسبه شده است. نتایج حاصل از این مقاله حاکی از آن است که مدل شبکه عصبی مصنوعی با الگوریتم آموزش PSO از دقت و صحت لازم جهت پیش بینی تغییرات زمان-مکان لایه یونسفر برخوردار می باشد.
Ghaffari Razin M R, Voosoghi B. Efficiency of Multi-layer Artificial Neural Network with PSO Training Algorithm in Ionosphere Time Series Modeling. JGST 2017; 7 (1) :101-113 URL: http://jgst.issgeac.ir/article-1-426-fa.html
غفاری رزین میر رضا، وثوقی بهزاد. ارزیابی کارائی شبکه عصبی چند لایه MLP-ANN با الگوریتم آموزش PSO در مدلسازی سری زمانی محتوای الکترون کلی لایه یونسفر . علوم و فنون نقشه برداری. 1396; 7 (1) :101-113