1. B. Evangelidis, "Space and time as relations: the theoretical approach of Leibniz," Philosophies, vol. 3, no. 2, p. 9, 2018. [ DOI:10.3390/philosophies3020009] 2. S. Yanchuk and G. Giacomelli, "Spatio-temporal phenomena in complex systems with time delays," J. Phys. A Math. Theor., vol. 50, no. 10, p. 103001, 2017. [ DOI:10.1088/1751-8121/50/10/103001] 3. M. Batty, "Network geography: Relations, interactions, scaling and spatial processes in GIS," Re-presenting GIS, pp. 149-170, 2005. 4. G. Del Mondo, P. Peng, J. Gensel, C. Claramunt, and F. Lu, "Leveraging spatio-temporal graphs and knowledge graphs: Perspectives in the field of maritime transportation," ISPRS Int. J. Geo-Information, vol. 10, no. 8, p. 541, 2021. [ DOI:10.3390/ijgi10080541] 5. A. Sagheer and M. Kotb, "Time series forecasting of petroleum production using deep LSTM recurrent networks," Neurocomputing, vol. 323, pp. 203-213, 2019. [ DOI:10.1016/j.neucom.2018.09.082] 6. M. T. Abbasi, A. A. Alesheikh, A. Jafari, and A. Lotfata, "Spatial and temporal patterns of urban air pollution in tehran with a focus on PM2. 5 and associated pollutants," Sci. Rep., vol. 14, no. 1, p. 25150, 2024. [ DOI:10.1038/s41598-024-75678-6] 7. H. Cheng and H. Fan, "PM2. 5 Concentration Hourly Multi-Step Prediction Using Spatial-Temporal Synchronous Graph Convolution Network," in IGARSS 2024-2024 IEEE International Geoscience and Remote Sensing Symposium, IEEE, 2024, pp. 5727-5731. [ DOI:10.1109/IGARSS53475.2024.10640613] 8. G. Yao, T. Lei, and J. Zhong, "A review of convolutional-neural-network-based action recognition," Pattern Recognit. Lett., vol. 118, pp. 14-22, 2019. [ DOI:10.1016/j.patrec.2018.05.018] 9. Y. Jia, J. Wang, W. Shou, M. R. Hosseini, and Y. Bai, "Graph neural networks for construction applications," Autom. Constr., vol. 154, p. 104984, 2023. [ DOI:10.1016/j.autcon.2023.104984] 10. T. Cheng, T. Bi, W. Ji, and C. Tian, "Graph Convolutional Network for Image Restoration: A Survey," Mathematics, vol. 12, no. 13, p. 2020, 2024. [ DOI:10.3390/math12132020] 11. L. Stanković and E. Sejdić, Vertex-frequency analysis of graph signals. Springer, 2019. [ DOI:10.1007/978-3-030-03574-7] 12. A. Sandryhaila and J. M. F. Moura, "Discrete signal processing on graphs," IEEE Trans. signal Process., vol. 61, no. 7, pp. 1644-1656, 2013. [ DOI:10.1109/TSP.2013.2238935] 13. E. Isufi, F. Gama, D. I. Shuman, and S. Segarra, "Graph filters for signal processing and machine learning on graphs," IEEE Trans. Signal Process., 2024. [ DOI:10.1109/TSP.2024.3349788] 14. H. S. O. Migdadi, R. A. Abd-Alhameed, H. A. Obeidat, J. M. Noras, E. A. A. Qaralleh, and M. J. Ngala, "FIR implementation on FPGA: Investigate the FIR order on SDA and PDA algorithms," in 2015 Internet Technologies and Applications (ITA), IEEE, 2015, pp. 417-421. [ DOI:10.1109/ITechA.2015.7317439] 15. I. Goodfellow, Deep Learning. MIT Press, 2016. 16. P. Maragos and R. Schafer, "Morphological filters--Part I: Their set-theoretic analysis and relations to linear shift-invariant filters," IEEE Trans. Acoust., vol. 35, no. 8, pp. 1153-1169, 1987. [ DOI:10.1109/TASSP.1987.1165259] 17. S. Abut, H. Okut, and K. J. Kallail, "Paradigm shift from Artificial Neural Networks (ANNs) to deep Convolutional Neural Networks (DCNNs) in the field of medical image processing," Expert Syst. Appl., p. 122983, 2023. [ DOI:10.1016/j.eswa.2023.122983] 18. B. P. Lathi and R. A. Green, Linear systems and signals, vol. 2. Oxford University Press New York, 2005. 19. A. V Oppenheim, Discrete-time signal processing. Pearson Education India, 1999. 20. S. O. Ayat, M. Khalil-Hani, A. A.-H. Ab Rahman, and H. Abdellatef, "Spectral-based convolutional neural network without multiple spatial-frequency domain switchings," Neurocomputing, vol. 364, pp. 152-167, 2019. [ DOI:10.1016/j.neucom.2019.06.094] 21. M. Mathieu, M. Henaff, and Y. LeCun, "Fast training of convolutional networks through ffts," arXiv Prepr. arXiv1312.5851, 2013. 22. Y. Wang, "Fractional fourier transform and its application," Theor. Nat. Sci., vol. 42, pp. 8-12, 2024. [ DOI:10.54254/2753-8818/42/20240103] 23. S. Zhang, H. Tong, J. Xu, and R. Maciejewski, "Graph convolutional networks: a comprehensive review," Comput. Soc. Networks, vol. 6, no. 1, pp. 1-23, 2019. [ DOI:10.1186/s40649-019-0069-y] 24. L. Gong, Z. Zhou, P. Tong, and S. Zhao, "Statistical properties of one-dimensional binary sequences with power-law power spectrum," Phys. A Stat. Mech. its Appl., vol. 390, no. 17, pp. 2977-2986, 2011. [ DOI:10.1016/j.physa.2011.04.010] 25. T. Highlander and A. Rodriguez, "Very efficient training of convolutional neural networks using fast fourier transform and overlap-and-add," arXiv Prepr. arXiv1601.06815, 2016. 26. F. R. K. Chung, Spectral graph theory, vol. 92. American Mathematical Soc., 1997. 27. A. Ortega, P. Frossard, J. Kovačević, J. M. F. Moura, and P. Vandergheynst, "Graph signal processing: Overview, challenges, and applications," Proc. IEEE, vol. 106, no. 5, pp. 808-828, 2018. [ DOI:10.1109/JPROC.2018.2820126] 28. D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst, "The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains," IEEE Signal Process. Mag., vol. 30, no. 3, pp. 83-98, 2013. [ DOI:10.1109/MSP.2012.2235192] 29. R. B. Joshi and S. Mishra, "Learning graph representations," in Principles of Social Networking: The New Horizon and Emerging Challenges, Springer, 2021, pp. 209-228. [ DOI:10.1007/978-981-16-3398-0_10] 30. W. L. Hamilton, R. Ying, and J. Leskovec, "Representation learning on graphs: Methods and applications," arXiv Prepr. arXiv1709.05584, 2017. 31. M. Zitnik, M. Agrawal, and J. Leskovec, "Modeling polypharmacy side effects with graph convolutional networks," Bioinformatics, vol. 34, no. 13, pp. i457-i466, 2018. [ DOI:10.1093/bioinformatics/bty294] 32. N. A. Asif et al., "Graph neural network: A comprehensive review on non-euclidean space," Ieee Access, vol. 9, pp. 60588-60606, 2021. [ DOI:10.1109/ACCESS.2021.3071274] 33. M. Niepert, M. Ahmed, and K. Kutzkov, "Learning convolutional neural networks for graphs," in International conference on machine learning, PMLR, 2016, pp. 2014-2023. 34. J. Yan, H. Li, F. Xu, X. Zhou, Y. Liu, and Y. Yang, "Speech Emotion Recognition Based on Temporal-Spatial Learnable Graph Convolutional Neural Network," Electronics, vol. 13, no. 11, p. 2010, 2024. [ DOI:10.3390/electronics13112010] 35. J. Zhou et al., "Graph neural networks: A review of methods and applications," AI open, vol. 1, pp. 57-81, 2020. [ DOI:10.1016/j.aiopen.2021.01.001] 36. J. Tang et al., "Applications of temporal graph metrics to real-world networks," Temporal Networks, pp. 135-159, 2013. [ DOI:10.1007/978-3-642-36461-7_7] 37. Y. Wang et al., "Graph pooling in graph neural networks: Methods and their applications in omics studies," Artif. Intell. Rev., vol. 57, no. 11, p. 294, 2024. [ DOI:10.1007/s10462-024-10918-9] 38. Y. Qi, Q. Li, H. Karimian, and D. Liu, "A hybrid model for spatiotemporal forecasting of PM2. 5 based on graph convolutional neural network and long short-term memory," Sci. Total Environ., vol. 664, pp. 1-10, 2019. [ DOI:10.1016/j.scitotenv.2019.01.333] 39. L. Ge, S. Li, Y. Wang, F. Chang, and K. Wu, "Global spatial-temporal graph convolutional network for urban traffic speed prediction," Appl. Sci., vol. 10, no. 4, p. 1509, 2020. [ DOI:10.3390/app10041509] 40. Y. Fang et al., "Cdgnet: A cross-time dynamic graph-based deep learning model for traffic forecasting," arXiv Prepr. arXiv2112.02736, 2021. 41. J. Zhu, Q. Wang, C. Tao, H. Deng, L. Zhao, and H. Li, "AST-GCN: Attribute-augmented spatiotemporal graph convolutional network for traffic forecasting," Ieee Access, vol. 9, pp. 35973-35983, 2021. [ DOI:10.1109/ACCESS.2021.3062114] 42. Y. Wang, "Advances in spatiotemporal graph neural network prediction research," Int. J. Digit. Earth, vol. 16, no. 1, pp. 2034-2066, 2023. [ DOI:10.1080/17538947.2023.2220610] 43. Y. Li, R. Yu, C. Shahabi, and Y. Liu, "Diffusion convolutional recurrent neural network: Data-driven traffic forecasting," arXiv Prepr. arXiv1707.01926, 2017. 44. X. Liu, M. Qin, Y. He, X. Mi, and C. Yu, "A new multi-data-driven spatiotemporal PM2. 5 forecasting model based on an ensemble graph reinforcement learning convolutional network," Atmos. Pollut. Res., vol. 12, no. 10, p. 101197, 2021. [ DOI:10.1016/j.apr.2021.101197] 45. S. Guo, Y. Lin, H. Wan, X. Li, and G. Cong, "Learning dynamics and heterogeneity of spatial-temporal graph data for traffic forecasting," IEEE Trans. Knowl. Data Eng., vol. 34, no. 11, pp. 5415-5428, 2021. [ DOI:10.1109/TKDE.2021.3056502] 46. Y. Zhang and T. Cheng, "Graph deep learning model for network-based predictive hotspot mapping of sparse spatio-temporal events," Comput. Environ. Urban Syst., vol. 79, p. 101403, 2020. [ DOI:10.1016/j.compenvurbsys.2019.101403] 47. J. Sun et al., "Crimeforecaster: Crime prediction by exploiting the geographical neighborhoods' spatiotemporal dependencies," in Machine Learning and Knowledge Discovery in Databases. Applied Data Science and Demo Track: European Conference, ECML PKDD 2020, Ghent, Belgium, September 14-18, 2020, Proceedings, Part V, Springer, 2021, pp. 52-67. [ DOI:10.1007/978-3-030-67670-4_4] 48. C. Wang, Z. Lin, X. Yang, J. Sun, M. Yue, and C. Shahabi, "Hagen: Homophily-aware graph convolutional recurrent network for crime forecasting," in Proceedings of the AAAI Conference on Artificial Intelligence, 2022, pp. 4193-4200. [ DOI:10.1609/aaai.v36i4.20338] 49. S. Zhao, R. Liu, B. Cheng, and D. Zhao, "Classification-labeled continuousization and multi-domain spatio-temporal fusion for fine-grained urban crime prediction," IEEE Trans. Knowl. Data Eng., vol. 35, no. 7, pp. 6725-6738, 2022. [ DOI:10.1109/TKDE.2022.3180726] 50. J. Gao et al., "STAN: spatio-temporal attention network for pandemic prediction using real-world evidence," J. Am. Med. Informatics Assoc., vol. 28, no. 4, pp. 733-743, 2021. [ DOI:10.1093/jamia/ocaa322] 51. A. Kapoor et al., "Examining covid-19 forecasting using spatio-temporal graph neural networks," arXiv Prepr. arXiv2007.03113, 2020. 52. J. Shu, X. Zhang, Y. Yao, D. Yi, and B. Gu, "Graph spatio-temporal attention network-based electricity demand forecasting," in 2021 6th International Conference on Power and Renewable Energy (ICPRE), IEEE, 2021, pp. 792-797. [ DOI:10.1109/ICPRE52634.2021.9635240] 53. F. B. Hüttel, I. Peled, F. Rodrigues, and F. C. Pereira, "Deep spatio-temporal forecasting of electrical vehicle charging demand," arXiv Prepr. arXiv2106.10940, 2021. 54. A. Salamat, X. Luo, and A. Jafari, "HeteroGraphRec: A heterogeneous graph-based neural networks for social recommendations," Knowledge-Based Syst., vol. 217, p. 106817, 2021. [ DOI:10.1016/j.knosys.2021.106817] 55. S. Dai, Y. Yu, H. Fan, and J. Dong, "Personalized poi recommendation: spatio-temporal representation learning with social tie," in Database Systems for Advanced Applications: 26th International Conference, DASFAA 2021, Taipei, Taiwan, April 11-14, 2021, Proceedings, Part I 26, Springer, 2021, pp. 558-574. [ DOI:10.1007/978-3-030-73194-6_37] 56. F. Yuan, Y. Xu, Q. Li, and A. Mostafavi, "Spatio-temporal graph convolutional networks for road network inundation status prediction during urban flooding," Comput. Environ. Urban Syst., vol. 97, p. 101870, 2022. [ DOI:10.1016/j.compenvurbsys.2022.101870] 57. M. Sit, B. Demiray, and I. Demir, "Short-term hourly streamflow prediction with graph convolutional gru networks," arXiv Prepr. arXiv2107.07039, 2021. 58. W. Liao, B. Zeng, J. Liu, P. Wei, and X. Cheng, "Taxi demand forecasting based on the temporal multimodal information fusion graph neural network," Appl. Intell., vol. 52, no. 10, pp. 12077-12090, 2022. [ DOI:10.1007/s10489-021-03128-1] 59. H. Junninen, H. Niska, K. Tuppurainen, J. Ruuskanen, and M. Kolehmainen, "Methods for imputation of missing values in air quality data sets," Atmos. Environ., vol. 38, no. 18, pp. 2895-2907, 2004. [ DOI:10.1016/j.atmosenv.2004.02.026] 60. C.-H. Lin and T.-H. Wen, "How spatial epidemiology helps understand infectious human disease transmission," Trop. Med. Infect. Dis., vol. 7, no. 8, p. 164, 2022. [ DOI:10.3390/tropicalmed7080164] 61. R. E. Thomson and W. J. Emery, Data analysis methods in physical oceanography. Elsevier, 2024. [ DOI:10.1016/B978-0-323-91723-0.00011-8] 62. R. P. Sishodia, R. L. Ray, and S. K. Singh, "Applications of remote sensing in precision agriculture: A review," Remote Sens., vol. 12, no. 19, p. 3136, 2020. [ DOI:10.3390/rs12193136] 63. C. Berndt and U. Haberlandt, "Spatial interpolation of climate variables in Northern Germany-Influence of temporal resolution and network density," J. Hydrol. Reg. Stud., vol. 15, pp. 184-202, 2018. [ DOI:10.1016/j.ejrh.2018.02.002] 64. A. H. Thiessen, "Precipitation averages for large areas," Mon. Weather Rev., vol. 39, no. 7, pp. 1082-1089, 1911.
https://doi.org/10.1175/1520-0493(1911)39<1082b:PAFLA>2.0.CO;2 [ DOI:10.1175/1520-0493(1911)392.0.CO;2] 65. D. Shepard, "A two-dimensional interpolation function for irregularly-spaced data," in Proceedings of the 1968 23rd ACM national conference, 1968, pp. 517-524. [ DOI:10.1145/800186.810616] 66. J. Stoer, R. Bulirsch, R. Bartels, W. Gautschi, and C. Witzgall, Introduction to numerical analysis, vol. 1993. Springer, 1980. [ DOI:10.1007/978-1-4757-5592-3] 67. D. Coppersmith and S. Winograd, "Matrix multiplication via arithmetic progressions," in Proceedings of the nineteenth annual ACM symposium on Theory of computing, 1987, pp. 1-6. [ DOI:10.1145/28395.28396] 68. M. A. Njifon and D. Schuhmacher, "Graph convolutional networks for spatial interpolation of correlated data," Spat. Stat., vol. 60, p. 100822, 2024. [ DOI:10.1016/j.spasta.2024.100822] 69. J. Li, Y. Shen, L. Chen, and C. W. W. Ng, "Rainfall spatial interpolation with graph neural networks," in International conference on database systems for advanced applications, Springer, 2023, pp. 175-191. [ DOI:10.1007/978-3-031-30678-5_14] 70. S. Yao and B. Huang, "Spatiotemporal interpolation using graph neural network," Ann. Am. Assoc. Geogr., vol. 113, no. 8, pp. 1856-1877, 2023. [ DOI:10.1080/24694452.2023.2206469] 71. M. Tang, P. Agrawal, F. Nie, S. Pongpaichet, and R. Jain, "A graph based multimodal geospatial interpolation framework," in 2016 IEEE International Conference on Multimedia and Expo (ICME), IEEE, 2016, pp. 1-6. [ DOI:10.1109/ICME.2016.7552968] 72. W. Zhu et al., "A dual branch graph neural network based spatial interpolation method for traffic data inference in unobserved locations," Inf. Fusion, vol. 114, p. 102703, 2025. [ DOI:10.1016/j.inffus.2024.102703]
|