[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Browse::
Journal Info::
Guide for Authors::
Submit Manuscript::
Articles archive::
For Reviewers::
Contact us::
Site Facilities::
Reviewers::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 14, Issue 4 (6-2025) ::
JGST 2025, 14(4): 31-49 Back to browse issues page
The identification of floods from Sentinel-1 data based on the combination of difference images obtained from different radar polarizations.
Ali Mohammadzadeh * , Saeed Asadi
Abstract:   (72 Views)
With the onset of climate change, which indicates the recurrence of floods in many parts of the world, and the continuous increase of economic assets in flood-prone areas, the need for community protection against floods has risen. Optical images have previously been successfully used to extract flood-prone areas; however, in situations where weather conditions are cloudy and unsuitable, preventing optical sensors from performing imaging operations, the use of radar data as a complement can be appropriate. In this research, a time series of Sentinel-1 images was utilized within the Google Earth Engine framework for rapid flood identification. The flood in April 2019 in Khuzestan Province affected an area of 1,198 square kilometers, causing significant damage to various residential and agricultural sectors. This study explored flooding in the Ahvaz and Shakariyeh regions by employing satellite images and presenting a flood detection algorithm. In the proposed method, the difference image was first calculated using the two bands VV and VH, and then the logarithmic ratio images with the two bands VV and VH were also produced to utilize the information from the two different bands of radar images to reduce noise in the image. Subsequently, wavelet transformation was combined with the averaging method of the corresponding coefficients from the two images to merge the difference image with the logarithmic ratio images separately for both bands VV and VH, thereby enhancing flood identification performance by integrating the data obtained from the two different polarizations, VV and VH. The merged image with two bands was then divided into M non-overlapping blocks of dimensions h×h, which were utilized in the PCA-K-means algorithm to produce a binary flood map, thus improving the performance of the conventional PCA-K-means algorithm. Comparing the proposed method in two scenarios using the conventional PCA-K-means model and the improved version demonstrated a superiority of the enhanced PCA-K-means model by 7% in F-score accuracy rate for the first dataset and by 6% for the second dataset compared to the conventional method. Moreover, the proposed method outperformed the PCA-GMM approach, increasing the F-score accuracy rate by 23% and 6% for the first and second datasets, respectively. The results obtained for the study areas of Ahvaz and Shakariyeh indicated overall accuracies of 95% and 94%, respectively. Based on the results obtained, it can be concluded that the method introduced in this research has a high capability for flood detection.
Article number: 3
Keywords: Flood Mapping, Kmeans, Wavelet fusion, Logarithmic ratios, Sentinel-1
Full-Text [PDF 1981 kb]   (29 Downloads)    
Type of Study: Research | Subject: Photo&RS
Received: 2024/07/12
References
1. Tabari, H. Climate change impact on flood and extreme precipitation increases with water availability.2020 Sci. Rep, 10, and 13768 [DOI:10.1038/s41598-020-70816-2]
2. European Court of Auditors-ECA. Floods Directive: Progress in Assessing Risks, While Planning and Implementation Need to Improve; Special Report No 25, 2018; ECA: Luxembourg, 2019
3. Sofia, G.; Nikolopoulos, E.I. Floods and rivers: A circular causality perspective. Sci. Rep. 2020, 10, 5175. [DOI:10.1038/s41598-020-61533-x]
4. Dong, Z.; Wang, G.; Amankwah, S.O.Y.; Wei, X.; Hu, Y.; Feng, A. Monitoring the summer flooding in the Poyang Lake area of China in 2020 based on Sentinel-1 data and multiple convolutional neural networks.2021, International Journal of Applied Earth Observation and Geoinformation. 102. 102400. [DOI:10.1016/j.jag.2021.102400]
5. Hoque, M.A.-A., Phinn, S., Roelfsema, Childs, I., 2018. Assessing tropical cyclone risks using geospatial techniques Appl. Geogr. 98, 22-33. [DOI:10.1016/j.apgeog.2018.07.004]
6. Sharifi, A., Amini, J. & Pourshakouri, F. (2016) Development of an allometric model to estimate aboveground biomass of forests using MLPNN algorithm, case study: Hyrcanian forests of Iran. Caspian Journal of Environmental
7. Sharifi,A(2020)remotely sensed vegetation indices for crop nutrition mapping.Journal of the Science of Food and Agriculture [DOI:10.1002/jsfa.10568]
8. Sharifi, A. & Hosseingholizadeh, M. (2020) Application of sentinel-1 data to estimate height and biomass of rice crop in Astaneh-ye Ashrafiyeh, Iran. Journal of the Indian Society of Remote Sensing [DOI:10.1007/s12524-019-01057-8]
9. Wania, A.; Joubert-Boitat, I.; Dottori, F.; Kalas, M.; Salamon, P. Increasing Timeliness of Satellite-Based Flood Mapping Using Early Warning Systems in the Copernicus Emergency Management Service. Remote Sens. 2021, 13, 2114. [DOI:10.3390/rs13112114]
10. Kotera, Akihiko . "Assessing the degree of flood damage to rice crops in the Chao Phraya delta, Thailand, using MODIS satellite imaging." Paddy and Water Environment 14 (2015): 271 - 280. [DOI:10.1007/s10333-015-0496-9]
11. Munasinghe , D .; Cohen, S .; Huang, Y; Tsang.; Zhang, J. ; Fang , Z. Intercomparison of Satellite Remote Sensing Based Flood Inundation Mapping Techniques. J. Am. Water Resour. Assoc. 2018, 54, 834-846 [DOI:10.1111/1752-1688.12626]
12. Ticehurst, C.; Zhou, Z.S.; Lehmann, E.; Yuan, F.; Thankappan, M.; Rosenqvist, A.; Lewis, B.; Paget, M. Building a SAR-Enabled Data Cube Capability in Australia Using SAR Analysis Ready Data. Data 2019, 4, 100. [DOI:10.3390/data4030100]
13. Misev, D.; Baumann, P.; Bellos, D.; Wiehle, S. BigDataCube: A Scalable, Federated Service Platform for Copernicus. In Proceedings of the 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, 9-12 December 2019; pp. 4103-4112. [DOI:10.1109/BigData47090.2019.9006222]
14. Wagner,W.; Bauer-Marschallinger, B.; Navacchi, C.; Reuß, F.; Cao, S.; Reimer, C.; Schramm, M.; Briese, C. A Sentinel-1 Backscatter Datacube for Global Land Monitoring Applications. Remote Sens. 2021, 13, 4622. [DOI:10.3390/rs13224622]
15. Gorelick, N.;Hancher, M.; Dixon, M.; Ilyushchenko, S.;Thau, D.;Moore, RGoogle Earth Engine:Planetary scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18-27. [DOI:10.1016/j.rse.2017.06.031]
16. DeVries, B.; Huang, C.;Armston, J.;Huang, W.; Jones, J.W.; Lang,M.W.Rapid and robust monitoring of flood events using Sentinel-1 and Landsat data on the Google Earth Engine. Remote Sens. Environ. 2020, 240, 111664. [DOI:10.1016/j.rse.2020.111664]
17. Markert, K.N.; Markert, A.M.; Mayer, T.; Nauman, C.; et al.Comparing Sentinel-1 Surface Water Mapping Algorithms and Radiometric Terrain Correction Processing in Southeast Asia Utilizing Google Earth Engine. Remote Sens. 2020, 12, 2469. [DOI:10.3390/rs12152469]
18. Basconcillo, J.; Lucero, A.; Solis, A.;Robert Sandoval, J.; Bautista, E.; Koizumi, T.;Kanamaru, H. Statistically Downscaled Projected Changes in Seasonal Mean Temperature and Rainfall in Cagayan Valley, Philippines. J. Meteorol. Soc. Jpn. Ser. 2016, 94, 151-164 [DOI:10.2151/jmsj.2015-058]
19. Tolentino, P.L.M.;Poortinga, A.; Kanamaru, H.; Keesstra, S.; Maroulis, J.;David, C.P.C.; Ritsema, C.J. Projected Impact of Climate Change on Hydrological Regimes in the Philippines. PLoS ONE 2016, 11, e0163941. [DOI:10.1371/journal.pone.0163941]
20. Ulloa, N. ; Chiang, S.H. ; Yun, S.H. Flood proxy mapping with normalized difference Sigma - Naught Index and Shannon's entropy. Remote Sens. 2020, 12, 1384. [DOI:10.3390/rs12091384]
21. Landuyt Lisa , Verhoest NEC , Van Coillie FMB . Flood Mapping in Vegetated Areas Using an Unsupervised Clustering Approach on Sentinel-1 and -2 Imagery. Remote Sensing. 2020; 12(21):3611. [DOI:10.3390/rs12213611]
22. harifipour, M.; Amani, M.; Moghimi, A. Flood Damage Assessment Using Satellite Observations within the Google Earth EngineCloud Platform. J. Ocean Technol. 2022,27, 64-75.
23. Peng, B.; Huang, Q.; Vongkusolkit, J.; Gao, S.; Wright, D.B.; Fang, Z.N.; Qiang, Y. Urban Flood Mapping With Bitemporal Multispectral Imagery Via a Self-Supervised Learning Framework. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, [DOI:10.1109/JSTARS.2020.3047677]
24. Zhao , G . ; Gao, H . Estimating Reservoir Evaporation Losses for the United States : Fusing Remote Sensing and Modeling Approaches. Remote Sens. Environ.
25. Vanama, Venkata Sai Krishna et al. "Change detection based flood mapping using multi-temporal Earth Observation satellite images: 2018 flood event of Kerala, India." European Journal of Remote Sensing 54 (2021): 42 - 58. [DOI:10.1080/22797254.2020.1867901]
26. Tupas ME, Roth F, Bauer-Marschallinger, Wagner. An Intercomparison of Sentinel-1 Based Change Detection Algorithms for Flood Mapping. Remote Sensing. 2023; 15(5):1200. [DOI:10.3390/rs15051200]
27. D. Amitrano, G. Di Martino,A. Iodice,D. Riccio and G. Ruello, "Unsupervised Rapid Flood Mapping Using Sentinel-1 GRD SAR Images," in IEEE Transactions on Geoscience and Remote Sensing, vol. 56, no. 6, pp. 3290-3299, June 2018 [DOI:10.1109/TGRS.2018.2797536]
28. Khatun M, Garai S, Sharma J, Singh R, Tiwari S, Rahaman.Flood mapping and damage assessment due to the super cyclone Yaas using Google Earth Engine in Purba Medinipur, West Bengal, India. Environ Monit Assess. 2022 Oct 12;194(12):869. [DOI:10.1007/s10661-022-10574-y]
29. Mrinal Singha, Jinwei Dong, Sangeeta Sarmah, Nanshan You, Yan Zhou, Geli Zhang, Russell Doughty, Identifying floods and flood-affected paddy rice fields in Bangladesh based on Sentinel-1 imagery and Google Earth Engine, ISPRS Journal of Photogrammetry and Remote Sensing, Volume 166, 2020, Pages 278-293, ISSN 0924-2716 [DOI:10.1016/j.isprsjprs.2020.06.011]
30. Dodangeh, P. and ShahHosseini, R:EXTRACTION OF FLOODAFFECTED AGRICULTURAL LANDS IN THE GOOGLE EARTH ENGINE; CASE STUDY OF KHUZESTAN, IRAN, ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-4/ W1-2022,123-128 [DOI:10.5194/isprs-annals-X-4-W1-2022-123-2023]
31. Foroughnia F,Alfieri SM,Menenti,Lindenbergh.Evaluation of SAR and Optical Data for Flood Delineation Using Supervised and Unsupervised Classification. Remote Sensing. 2022; 14(15):3718. [DOI:10.3390/rs14153718]
32. Zhang M, Liu D, Wang S,Xiang H, Zhang W.Multisource Remote Sensing Data-Based Flood Monitoring and Crop Damage Assessment: A Case Study on the July 2021 Extraordinary Rainfall Event in Henan, China. Remote Sens. 2022; 14(22):5771. [DOI:10.3390/rs14225771]
33. E. J. M. Rignot and J. J. van Zyl, "Change detection techniques for ERS-1 SAR data," in IEEE Transactions on Geoscience and Remote Sensing, vol. 31, no. 4, pp. 896-906, July 1993, doi: 10.1109/36.239913. [DOI:10.1109/36.239913]
34. A.S.Yommy, R. Liu and A. S. Wu,"SAR Image Despeckling Using Refined Lee Filter,"2015 7th InternationalConference on Intelligent Human-Machine Systems and Cybernetics, Hangzhou, China, 2015, pp. 260-265. [DOI:10.1109/IHMSC.2015.236]
35. Gong, Maoguo,Zhiqiang Zhou and Jingjing Ma "Change Detection in SyntheticApertureRadar Images based on Image Fusion and Fuzzy Clustering." IEEE Transactions on Image Processing 21 (2012): 2141-2151. [DOI:10.1109/TIP.2011.2170702]
36. T. Celik , "Unsupervised Change Detection in Satellite Images Using Principal Component Analysis and k-Means Clustering" in IEEE Geoscience and Remote Sensing Letters, vol. 6, no. 4, pp. 772-776, Oct. 2009. [DOI:10.1109/LGRS.2009.2025059]
37. M.S.Madanian , A.Sofianian," Areview of some of the methods for detecting changes Using remote sensing data in Scientific-Research Quarterly of Geographical Data (SEPEHR), vol. 21, no. 82, pp. 44-49, 2012.
38. Nhangumbe, Manuel & Nascetti, Andrea & Georganos, Stefanos & Ban,Yifang. (2023) .Supervised and unsupervised machine learning approaches using Sentinel data for flood mapping and damage assessment in Mozambiq. Remote SensingApplications: Society and Environment. 32. [DOI:10.1016/j.rsase.2023.101015]
39. Vongkusolkit, Jirapa,Bo Peng,Meiliu Wu,Qunying Huang, Christian G. Andresen. 2023."Near ReaTime Flood Mapping with Weakly Supervised Machine Learning" Remote Sensing 15, no. 13: 3263 [DOI:10.3390/rs15133263]
40. Lim, Joongbin, and Kyoo - seock Lee. " Flood mapping using multi-source remotely sensed data and logistic regression in the heterogeneous mountainous regions in North Korea." Remote Sensing 10, no. 7 (2018): 1036. [DOI:10.3390/rs10071036]
41. Guan, Haixiang,Huang, Jianxi, Li, Xuecao, Li,Miao, Shuangxi ,Su,Wei,Ma, Yu,Quandi, Niu & Huang, Hai.(2023). Improved Gaussian mixture model to map the flooded crops of VVandVH polarization data. Remote Sensing of Environment. [DOI:10.1016/j.rse.2023.113714]
42. Abbas, Arbab & Minallh, N. & Ahmad, Nasir & Abdur Rehman Abid, Sahibzada & Khan, Muhammad. (2016). K-Means and ISODATA Clustering Algorithms for Landcover Classification Using Remote Sensing. 48. 315-318.
43. Ritu Yadav,Andrea Nascetti,Hossein Azizpour,Yifang Ban, Unsupervised flood detection on SAR time series using variational autoencoder, International Journal of Applied Earth Observation and Geoinformation, Volume 126, 2024, 103635 [DOI:10.1016/j.jag.2023.103635]
44. Reksten, Jarle Hamar. "FLOOD DETECTION IN NORWAY BASED ON SENTINEL-1 SAR IMAGERY." The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (2019) [DOI:10.5194/isprs-archives-XLII-3-W8-349-2019]
45. Dasgupta A, Grimaldi S, Ramsankaran RAAJ, Pauwels VRN, Walker JP, Chini M. Flood Mapping Using Synthetic Aperture Radar Sensors from Local to Global Scales. In J-P. Schumann G, D. Bates P, Apel H, T. Aronica G, Global Flood Hazard: Applications in Modeling, Mapping, and Forecasting.
46. Huang M, Jin S. Rapid Flood Mapping and Evaluation with a Supervised Classifier and Change Detection in Shouguang Using Sentinel-1 SAR and Sentinel-2 Optical Data. Remote Sensing. 2020; 12(13):2073. [DOI:10.3390/rs12132073]
47. de Melo, A.C.O., de Moraes, R.M., dos Santos Machado, L. (2003). Gaussian Mixture Models for Supervised Classification of Remote Sensing Multispectral Images.In: Sanfeliu, A, Ruiz - Shulcloper, J.(Eds) Progress in Pattern Recognition, Speech and Image Analysis. CIARP 2003. Lecture Notes in Computer Science, vol 2905. Springer, Berlin [DOI:10.1007/978-3-540-24586-5_54]
48. moghimi A, Khazai S, ebadi H. Unsupervised Change Detection in Multitemporal SAR Images Based on Integration of Clustering and Active Contour Model. jgit 2017; 5 (1) :21-37 [DOI:10.29252/jgit.5.1.21]
49. Mojaradi B, Maddah S. Flood damage monitoring on land use using radar and optical satellite image processing. Iranian Dam and Hydroelectric Powerplant 2023; 10 (ُS1) :1-11
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

mohammadzadeh A, asadi S. The identification of floods from Sentinel-1 data based on the combination of difference images obtained from different radar polarizations.. JGST 2025; 14 (4) : 3
URL: http://jgst.issgeac.ir/article-1-1195-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 14, Issue 4 (6-2025) Back to browse issues page
نشریه علمی علوم و فنون نقشه برداری Journal of Geomatics Science and Technology