[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
برای نویسندگان::
آرشیو مجله و مقالات::
برای داوران::
تماس با ما::
امکانات پایگاه::
::
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
پایگاه های نمایه کننده







 
..
آمار سایت
تعداد مشاهده ی مقالات: 2588942

مقالات منتشر شده: 637
نرخ پذیرش: 73.89
نرخ رد: 17.8

میانگین دریافت تا تصمیم‌گیری اولیه: 5 تا 10 روز
میانگین دریافت تا پذیرش: 191 روز
____
..
:: دوره 13، شماره 3 - ( 12-1402 ) ::
دوره 13 شماره 3 صفحات 87-73 برگشت به فهرست نسخه ها
میوئوگرافی به عنوان ابزاری نوین در نقشه برداری سطحی/زیرسطحی
محسن شریف زاده*
چکیده:   (337 مشاهده)
کسب دانش و در ادامه گسترش فناوری آشکارسازی پرتوهای کیهانی منجر به ایجاد ارتباطات نوینی بین رشتههای دانشگاهی نظیر فیزیک، زمینشناسی، کشاورزی، معدن و باستان شناسی شده‌است. به سبب برهمکنش این پرتوها با اتمسفر زمین شار گستردهای از ذرات ثانویه تولید و به زمین برخورد میکنند. میوئونها به عنوان یکی از این ذرات باردار پرانرژی قابلیت نفوذ در اجسام بزرگ سطحی و اعماق زمین را دارد که ابزاری نوین در نقشهبرداری از سطح/زیرسطح را فراهم میکند. در این تکنیک باتوجه به وابستگی تضعیف و پراکندگی این ذرات باردار به چگالی­ امکان تصویربرداری از انواع سازه­‌های سطحی نظیر آتشفشان، آثار باستانی و ساختارهای عمرانی و یا مخازن، حفرات، پسماندهای رادیواکتیو و رگه­‌های معدنی باارزش زیرسطحی فراهم است. هدف در این مقاله، مروری بر تحقیقات صورت گرفته در سنوات اخیر بر روی تکنیک نوین میوئوگرافی است و سعی گردید در اینجا در ساختاری جدید به کاربرد این تکنیک در هر سه حوزه تصویربرداری، نقشه‌­برداری و سنجش از راه دور جهت استخراج اطلاعات از حجم‌­های بزرگ سطح/زیر سطح زمین است.
شماره‌ی مقاله: 6
واژه‌های کلیدی: پرتوهای کیهانی، میوئون، نقشه برداری، ابزار، نوین، سطحی، زیرسطحی
متن کامل [PDF 755 kb]   (138 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: فتوگرامتری و سنجش از دور
دریافت: 1402/6/9
فهرست منابع
1. P. Galison, The discovery of the muon and the failed revolution against quantum electrodynamics, Centaurus 26 (1983) 262. [DOI:10.1111/j.1600-0498.1982.tb00666.x]
2. C.D. Anderson, S. Neddermeyer, Note on the nature of cosmic-ray particles, Phys. Rev. 51, 884 51 (1937) 884, https://doi.org/10.1103/PhysRev.51.884 [DOI:10.1103/PhysRev.51.884.]
3. C.D. Anderson, Early work on the positron and muon, Am. J. Phys. 29 (1961) 825, https://doi.org/10.1119/1.1937627 [DOI:10.1119/1.1937627.]
4. E.P. George, Cosmic rays measure overburden of tunnel, Commonwealth Eng. July 1 (1955) 455.
5. L.W. Alvarez, et al., Search for hidden chambers in the pyramids, Science 167 (1970) 832. [DOI:10.1126/science.167.3919.832]
6. L. Malmqvist, G. Jönsson, K. Kristiansson, L. Jacobsson, Theoretical studies of in-situ rock density determination using cosmic-ray muon intensity measure ments with application in mining geophysics, Geophys. 44(9) (1979) 1549, https://doi.org/10.1190/1.1441026 [DOI:10.1190/1.1441026.]
7. H. Tanaka, et al., Detecting a mass change inside a volcano by cosmic-ray muon radiography (muography): first results from measurements at Asama volcano, Japan, Geophys. Res.Lett. 36 (2009) 1944, https://doi.org/10.1029/2009GL039448 [DOI:10.1029/2009GL039448.]
8. K.N. Borozdin, et al., Radiographic imaging with cosmic-ray muons, Nature 422 (2003) 277, https://doi.org/10.1038/422277a [DOI:10.1038/422277a.]
9. Flygare J, Bonneville A, Kouzes R, Yamaoka J, Lintereur A. 2018 Muon borehole detector development for use in 4-D tomographic density monitoring. IEEE Trans. Nucl. Sci. 65, 2724-2731. (doi:10.1109/TNS.2018.2869196). [DOI:10.1109/TNS.2018.2869196]
10. R. Bull, W.F. Nash, B.C. Rustin, Nuovo Cimento, XLA, 2, 365-384 (1965). [DOI:10.1007/BF02721030]
11. S. Matsuno, F. Kajino, Y. Kawashima, T. Kitamura, K. Mitsui, et al., Phys. Rev. D 29 1-23 (1984). [DOI:10.1103/PhysRevD.29.1]
12. E.V. Bugaev, A. Misaki, V.A. Naumov, T.S. Sinegovskaya, S.I. Sinegovsky, et al., Phys. Rev. D, 58, 054001 (1998). [DOI:10.1103/PhysRevD.58.054001]
13. T. Gaisser and T. Stanev, Phys. Lett. B, 667, 254-260 (2008).
14. T.K. Gaisser, Earth Planets Space, 62, 195-199 (2010). [DOI:10.5047/eps.2009.06.007]
15. D.E. Groom, N.V. Mokhov and S.I. Striganov, Atomic Data and Nuclear Data Tables, 78, 183-356 (2001). [DOI:10.1006/adnd.2001.0861]
16. R.K. Adair, and H. Kasha in: V W Hughes, C S Wu (Eds.), Muon Physics, 1, p 323 (New York: Academic Press) (1976). [DOI:10.1016/B978-0-12-360601-3.50010-4]
17. L. Alvarez, A.H. Compton, Phys. Rev. 43 (1933) 835. [DOI:10.1103/PhysRev.43.835]
18. S. Piatek, Silicon Photomultiplier. Operation, Performance & Possible Applications, 2019, (https://www.hamamatsu.com/sp/hc/osh/sipm_webinar_1.10.pdf).
19. G. Baccani, et al., The MIMA project. design, construction and performances of a compact hodoscope for muon radiography applications in the context of archaeology and geophysical prospections, JINST 13 (11) (2018) P11001, https://doi.org/10.1088/1748-0221/13/11/P11001 [DOI:10.1088/1748-0221/13/11/P11001.]
20. G. Saracino, et al., The MURAVES muon telescope: technology and expected performances, Ann. Geophys. Italy 60 (1) (2017) S0103, https://doi.org/10.4401/ag-7378 [DOI:10.4401/ ag-7378.]
21. A. Anastasio, et al., The MU-RAY experiment. an application of SiPM technology to the understanding of volcanic phenomena, Nucl. Inst. Methods A 718 (2013) 134, https://doi.org/10.1016/j.nima.2012.08.065 [DOI:10.1016/j.nima.2012.08.065.]
22. A. Bonneville, et al., Borehole muography of subsurface reservoirs, Philos. Trans. R. Soc. A 377 (2018) 0060, https://doi.org/10.1098/rsta.2018.0060 [DOI:10.1098/rsta.2018.0060.]
23. J. Gluyas, et al., Passive, continuous monitoring of carbon dioxide geostorage using muon tomography, Philos. Trans. R. Soc. A 377 (2018) 0059, https://doi. org/10.1098/rsta.2018.0059. [DOI:10.1098/rsta.2018.0059]
24. S. Ansoldi, et al., MGR: An innovative, low-cost and compact cosmic-ray detector, Nucl. Inst. Methods A 567 (1) (2006) 298, https://doi.org/10.1016/j.nima.2006.05.099 [DOI:10.1016/j.nima. 2006.05.099.]
25. See e.g., F. Sauli, Gaseous Radiation Detectors, Cambridge University Press, 2014.
26. T. Nakano, PhD thesis, Nagoya University (in Japanese) (1997).
27. C. Bozza on behalf of the OPERA Collaboration, 2005 IEEE Nuclear Science Symposium Conference Record, N14-159 751-755(2005).
28. V. Hess, Phys. Zeit. 13 (1912) 1084.
29. A.H. Compton, Phys. Rev. 43 (1933) 387. [DOI:10.1103/PhysRev.43.387]
30. S. Bouteille, et al., Nucl. Instrum. Methods A 834 (2016) 223. [DOI:10.1016/j.nima.2016.08.002]
31. K.N. Borozdin, et al., Nature 422 (2003) 277. [DOI:10.1038/422277a]
32. H. Tanaka, Japanese volcanoes visualized with muography, Philos. Trans. R. Soc. A 377 (2018) 2137, https://doi.org/10.1098/rsta.2018.0142 [DOI:10.1098/rsta.2018.0142.]
33. R. D'Alessandro, et al., Volcanoes in Italy and the role of muon radiography, Philos. Trans. R. Soc. A 377 (2018) 0050, https://doi.org/10.1098/rsta.2018.0050 [DOI:10.1098/rsta.2018.0050.]
34. G. Saracino, C. Carloganu, Looking at volcanoes with cosmic-ray muons, Phys. Today 65 (2012) 60. [DOI:10.1063/PT.3.1829]
35. J. Marteau, et al., Muon tomography applied to active volcanoes, PoS PhotoDet2015 (2016) 004, https://doi.org/10.22323/1.252.0004 [DOI:10.22323/1.252.0004.]
36. J. Peña Rodríguez, et al., Calibration and first measurements of MuTe: a hybrid Muon Telescope for geological structures, Proceedings of the HAWC Contributions to the Thirty-sixth International Cosmic Ray Conference (ICRC2019), (2019). [DOI:10.22323/1.358.0381]
37. H. Asorey, et al., Muon Tomography sites for Colombia volcanoes, 2017, arXiv:1705 .09884 [physics.geo-ph].
38. I. Guerrero, et al., Design and construction of a muon detector prototype for study the Galeras volcano internal structure, J. Phys.: Conf. Ser. 1247 (2019) 012020, https://doi.org/10.1088/1742-6596/1247/1/012020 [DOI:10.1088/1742-6596/1247/1/012020.]
39. V. Tioukov, et al., First muography of Stromboli volcano, Sci. Rep. 9 (2019) 6695, https://doi.org/10.1038/s41598-019-43131-8 [DOI:10.1038/s41598-019-43131-8.]
40. F. Barberi, Risk assessment of Vesuvius volcano, 2013, (GIFT2013, General Assembly of the European Geosciences :union:, Vienna (Austria), http://static2.egu. eu/media/filer_public/2013/06/20/barberi.pdf
41. F. Ambrosino, et al., The MU-RAY project: detector technology and first data from Mt. Vesuvius, JINST 9 (2014) C02029, https://doi.org/10.1088/1748-0221/9/02/C02029 [DOI:10.1088/1748-0221/9/02/C02029.]
42. G. Saracino, et al., The MURAVES muon telescope: technology and expected performances, Ann. Geophys. Italy 60 (1) (2017) S0103, https://doi.org/10.4401/ag-7378 [DOI:10.4401/ ag-7378]
43. A. Anastasio, et al., The MU-RAY experiment. an application of SiPM technology to the understanding of volcanic phenomena, Nucl. Inst. Methods A 718 (2013) 134, https://doi.org/10.1016/j.nima.2012.08.065 [DOI:10.1016/j.nima.2012.08.065.]
44. R. D'Alessandro, et al., Volcanoes in Italy and the role of muon radiography, Philos. Trans. R. Soc. A 377 (2018) 0050, https://doi.org/10.1098/rsta.2018.0050 [DOI:10.1098/rsta.2018.0050.]
45. C. Cârloganu, et al., Towards a muon radiography of the Puy de Dôme, Geosci. Inst. Methods Data Syst. 2 (2013) 55, https://doi.org/10.5194/gi-2-55-2013 [DOI:10.5194/gi-2-55-2013.]
46. C. Cârloganu, Density imaging of volcanoes with atmospheric muons using GRPCs, PoS EPS-HEP2011 (2011) 055, https://doi.org/10.22323/1.134.0055 [DOI:10.22323/1.134.0055.]
47. S. Béné, et al., Volcano radiography with GRPCs, Proceedings, International Conference on Calorimetry for the High Energy Frontier (CHEF 2013): Paris, France, April 22-25, 2013, (2013), p. 414.
48. V. Buridon, et al., First results of the CALICE SDHCAL technological prototype, JINST 11 (04) (2016) P04001, https://doi.org/10.1088/1748-0221/11/04/P04001 [DOI:10.1088/1748-0221/11/04/P04001.]
49. F. Ambrosino, et al., Joint measurement of the atmospheric muon flux through the puy de dôme volcano with plastic scintillators and resistive plate chambers detectors, J. Geophys. Res. 120 (11) (2015) 7290, https://doi.org/10.1002/2015JB011969 [DOI:10.1002/2015JB011969.]
50. Coordinating Committee for the Prediction of Volcanic Eruption of the Japan Meteorological Agency, Minutes of the 113th Volcanic Eruption Liaison Committee (in Japanese), 2009, (https://www.data.jma.go.jp/svd/vois/data/tokyo/STOCK/kaisetsu/CCPVE/Report/103/kaiho_103_32.pdf) Date and time: 13:00-17:30 on June 18, 2009.
51. H.K.M. Tanaka, T. Kusagaya, H. Shinohara, Radiographic visualization of magma dynamics in an erupting volcano, Nat. Commun. 5 (2014) 3381, https://doi. org/10.1038/ncomms4381. [DOI:10.1038/ncomms4381]
52. N. Lesparre, et al., Geophys. J. Int. A 183 (2010) 1348. [DOI:10.1111/j.1365-246X.2010.04790.x]
53. N. Lesparre, et al., Geosci. Instrum. Method. Data Syst. 1 (2012) 33. [DOI:10.5194/gi-1-33-2012]
54. K. Jourde, et al., Geophys. Res. Lett. 40 (2013) 6334. [DOI:10.1002/2013GL058357]
55. K. Jourde, et al., Nat. Sci. Rep. 6 (2016) 33406. [DOI:10.1038/srep33406]
56. A. Anastasio, et al., Nucl. Instrum. Methods A 732 (2013) 423. [DOI:10.1016/j.nima.2013.05.159]
57. V. Tioukov, et al., Ann. Geophys. 60 (2017) S0111.
58. L. Oláh, et al., High-definition and low-noise muography of the Sakurajima volcano with gaseous tracking detectors, Sci. Rep. 8 (1) (2018) 3207, https://doi. org/10.1038/s41598-018-21423-9. [DOI:10.1038/s41598-018-21423-9]
59. L. Oláh, et al., Investigation of the limits of high-definition muography for observation of Mt. Sakurajima, Philos. Trans. R. Soc. A 377 (2018) 0135, https://doi. org/10.1098/rsta.2018.0135. [DOI:10.1098/rsta.2018.0135]
60. D. Varga, et al., Detector developments for high performance muography applications, Nucl. Inst. Methods A (2019), [DOI:10.1016/j.nima.2019.05. 077.]
61. H. Tanaka, Japanese volcanoes visualized with muography, Philos. Trans. R. Soc. A 377 (2018) 2137, https://doi.org/10.1098/rsta.2018.0142 [DOI:10.1098/rsta.2018.0142.]
62. L. Oláh, et al., Plug formation imaged beneath the active craters of Sakurajima volcano with muography, Geophys. Res. Lett. 46 (17-18) (2019) 10417, https:// doi.org/10.1029/2019GL084784. [DOI:10.1029/2019GL084784]
63. L.W. Alvarez, et al., Science, New Series 167 (1970) 832. [DOI:10.1126/science.167.3919.832]
64. 33rd international cosmic ray conference, Rio de Janeiro (2013).
65. http://www.scanpyramids.org/.
66. http://www.hip.institute/#press.
67. H. Gomez, et al., XIV International Conference on Topics in Astroparticle and Underground Physics, TAUP 2015.
68. A. Zenoni, et al., arXiv:14031709.
69. J. Marteau, et al., DIAPHANE: muon tomography applied to volcanoes, civil engineering, archaelogy, JINST 12 (02) (2017) C02008, https://doi.org/10.1088/1748-0221/12/02/C02008 [DOI:10.1088/ 1748-0221/12/02/C02008.]
70. H. Gómez, et al., Studies on muon tomography for archaeological internal structures scanning, J. Phys. Conf. Ser. 718 (5) (2016) 052016, https://doi.org/10.1088/1742-6596/718/5/052016 [DOI:10. 1088/1742-6596/718/5/052016.]
71. G. Saracino, et al., Applications of muon absorption radiography to the fields of archaeology and civil engineering, Philos. Trans. R. Soc. A 377 (2018) 0057, https://doi.org/10.1098/rsta.2018.0057 [DOI:10.1098/rsta.2018.0057.]
72. K. Chaiwongkhot, et al., Development of a portable muography detector for infrastructure degradation investigation, IEEE Trans. Nucl. Sci. 65 (2018) 2316, https://doi.org/10.1109/TNS.2018.2855737 [DOI:10.1109/TNS.2018.2855737.]
73. K.N. Borozdin, et al., Radiographic imaging with cosmic-ray muons, Nature 422 (2003) 277, https://doi.org/10.1038/422277a [DOI:10.1038/422277a.]
74. A. Harel, D. Yaish, Lingacom muography, Philo. Trans. R. Soc. A 377 (2018) 0133, https://doi.org/10.1098/rsta.2018.0133 [DOI:10.1098/rsta.2018.0133.]
75. F. Riggi, et al., The muon portal project: commissioning of the full detector and first results, Proceedings of the Eighth International Conference on New Developments in Photodetection (NDIP17), Tours, France, July 3-7, 2017, 912 (2018), p. 16, https://doi.org/10.1016/j.nima.2017.10.006 [DOI:10.1016/j.nima.2017.10.006.]
76. P. Checchia, et al., INFN muon tomography demonstrator: past and recent results with an eye to near-future activities, Philos. Trans. R. Soc. A 377 (2018) 0065, https://doi.org/10.1098/rsta.2018.0065 [DOI:10.1098/rsta.2018.0065.]
77. S. Vanini, et al., Muography of different structures using muon scattering and absorption algorithms, Philos. Trans. R. Soc. A 377 (2018) 0051, https://doi.org/ 10.1098/rsta.2018.0051. https://doi.org/10.1098/rsta.2018.0051 [DOI:10.1098/rsta.2018.0051.]
78. V. Glasser, R. Lipton, Data analysis and detector troubleshooting for the Silicon Muon Scanner, Technical Report (FERMILAB-PUB-18-503-E), FNAL, 2018.
79. CMS Collaboration, Commissioning and performance of the CMS silicon strip tracker with cosmic ray muons, JINST 5 (3) (2010) T03008, https://doi.org/10.1088/1748-0221/5/03/T03008 [DOI:10. 1088/1748-0221/5/03/T03008.]
80. Decision Sciences, "About us" page, 2019, (https://decisionsciences.com/about-us/).
81. D. Poulson, et al., Cosmic ray muon computed tomography of spent nuclear fuel in dry storage casks, Nucl. Inst. Methods A 842 (2017) 48, https://doi.org/10.1016/j.nima.2016.10.040 [DOI:10. 1016/j.nima.2016.10.040.]
82. G. Jonkmans, et al., Nuclear waste imaging and spent fuel verification by muon tomography, Ann. Nucl. Energy 53 (2013) 267, https://doi.org/10.1016/j.anucene.2012.09.011 [DOI:10.1016/j. anucene.2012.09.011.]
83. K. Borozdin, et al., Cosmic ray radiography of the damaged cores of the Fukushima reactors, Phys. Rev. Lett. 109 (2012) 152, https://doi.org/10.1103/PhysRevLett.109.152501 [DOI:10.1103/ PhysRevLett.109.152501.]
84. H. Miyadera, et al., Imaging Fukushima Daiichi reactors with muons, AIP Adv. 3 (5) (2013) 052133, https://doi.org/10.1063/1.4808210 [DOI:10.1063/1.4808210.]
85. N. Kume, et al., Muon trackers for imaging a nuclear reactor, JINST 11 (09) (2016) P09008, https://doi.org/10.1088/1748-0221/11/09/P09008 [DOI:10.1088/1748-0221/11/09/P09008.]
86. H. Fujii, et al., Imaging the Inner Structure of a Nuclear Reactor by Cosmic Muon Radiography, 2019, arXiv:1902.01992 [physics.ins-det]. [DOI:10.1093/ptep/ptz040]
87. D. Bryman, J. Bueno, J. Jansen, ASEG Extended Abstracts (2015) 1. [DOI:10.1071/ASEG2015ab054]
88. V. Kudryavtsev, et al., Int. J. Green. Gas Contr. 11 (2012) 21. [DOI:10.1016/j.ijggc.2012.07.023]
89. Flygare J, Bonneville A, Kouzes R, Yamaoka J, Lintereur A. 2018 Muon borehole detector development for use in 4-D tomographic density monitoring. IEEE Trans. Nucl. Sci. 65, 2724-2731. (doi:10.1109/TNS.2018.2869196). [DOI:10.1109/TNS.2018.2869196]
90. Bonneville A et al. 2017 A novel muon detector for borehole density tomography. Nucl. Instrum. Methods Phys. Res. Section A 851, 108-117. (doi:10.1016/j.nima.2017.01.023). [DOI:10.1016/j.nima.2017.01.023]
91. Athanassas, Constantin D. "Muography for geological hazard assessment in the South Aegean active volcanic arc (SAAVA)." Mediterranean Geoscience Reviews 2 (2020): 233-246. [DOI:10.1007/s42990-020-00020-x]
92. Tanaka, Hiroyuki KM, et al. "First results of undersea muography with the Tokyo-Bay seafloor hyper-kilometric submarine deep detector." Scientific reports 11.1 (2021): 19485. [DOI:10.1038/s41598-021-01979-9]
93. Tanaka, Hiroyuki KM. "Development of the muographic tephra deposit monitoring system." Scientific Reports 10.1 (2020): 14820. [DOI:10.1038/s41598-020-71902-1]
94. Oláh, László, and Hiroyuki KM Tanaka. "Machine learning with muographic images as input: An application to volcano eruption forecasting." Muography: Exploring Earth's Subsurface with Elementary Particles (2022): 43-54. [DOI:10.1002/9781119722748.ch4]
95. Baccani, G., et al. "The reliability of muography applied in the detection of the animal burrows within River Levees validated by means of geophysical techniques." Journal of Applied Geophysics 191 (2021): 104376. [DOI:10.1016/j.jappgeo.2021.104376]
96. Chevalier, Antoine, et al. "Using mobile muography on board a Tunnel boring machine to detect man-made structures." AGU Fall Meeting Abstracts. Vol. 2019. 2019.
97. Pyle, David M., Tamsin A. Mather, and Juliet Biggs. "Remote sensing of volcanoes and volcanic processes: integrating observation and modelling-introduction." Geological Society, London, Special Publications 380.1 (2013): 1-13. [DOI:10.1144/SP380.14]
98. Moussallam, Yves, et al. "Monitoring and forecasting hazards from a slow growing lava dome using aerial imagery, tri-stereo Pleiades-1A/B imagery and PDC numerical simulation." Earth and Planetary Science Letters 564 (2021): 116906. [DOI:10.1016/j.epsl.2021.116906]
99. Pinel, Virginie, Michael P. Poland, and Andy Hooper. "Volcanology: Lessons learned from synthetic aperture radar imagery." Journal of Volcanology and Geothermal Research 289 (2014): 81-113. [DOI:10.1016/j.jvolgeores.2014.10.010]
100. Biggs, Juliet, and Matthew E. Pritchard. "Global volcano monitoring: What does it mean when volcanoes deform?." Elements 13.1 (2017): 17-22. [DOI:10.2113/gselements.13.1.17]
101. Ramsey, Michael S., and Andrew JL Harris. "Volcanology 2020: How will thermal remote sensing of volcanic surface activity evolve over the next decade?." Journal of Volcanology and Geothermal research 249 (2013): 217-233. [DOI:10.1016/j.jvolgeores.2012.05.011]
102. Marteau, Jacques, et al. "Applied muography: from volcanology to archaelogy with a mobile muon detector (DIAPHANE/ARCHé)." AGU Fall Meeting Abstracts. Vol. 2018. 2018.
103. Teixeira, Pedro, et al. "Advancements in the LouMu Project-Muography for Geophysical Surveys." Meteorology and Geophysics: 116.
104. Teixeira, Pedro, et al. "Muography for Underground Geological Surveys: Ongoing Application at the Lousal Mine (Iberian Pyrite Belt, Portugal)." (2022).
105. Pereira, Mário Gonzalez, et al. "Meteorology and Geophysics.".
ارسال پیام به نویسنده مسئول

ارسال نظر درباره این مقاله
نام کاربری یا پست الکترونیک شما:

CAPTCHA


XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sharifzadeh M. Muography as a new tool in surface/subsurface mapping. JGST 2024; 13 (3) : 6
URL: http://jgst.issgeac.ir/article-1-1163-fa.html

شریف زاده محسن. میوئوگرافی به عنوان ابزاری نوین در نقشه برداری سطحی/زیرسطحی. علوم و فنون نقشه برداری. 1402; 13 (3) :73-87

URL: http://jgst.issgeac.ir/article-1-1163-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 13، شماره 3 - ( 12-1402 ) برگشت به فهرست نسخه ها
نشریه علمی علوم و فنون نقشه برداری Journal of Geomatics Science and Technology