1. Hoyois, P. and Guha-Sapir, D. (2003), "Three decades of floods in Europe: a preliminary analysis of EMDAT data," WHO collaborating centre for research on the epidemiology of disasters (CRED), Catholique University of Louvain. 2. Messner, F. and Meyer, V. (2006), "Flood damage, vulnerability and risk perception-challenges for flood damage research," In Flood risk management: hazards, vulnerability and mitigation measures, Springer, Dordrecht, PP. 149-167. [ DOI:10.1007/978-1-4020-4598-1_13] 3. Pourghasemi, H. R., Razavi-Termeh, S. V., Kariminejad, N., Hong, H. and Chen, W. (2020), "An assessment of metaheuristic approaches for flood assessment". Journal of Hydrology, 582, 124536. [ DOI:10.1016/j.jhydrol.2019.124536] 4. Ministry of Energy (2015). Flood management system in the Ministry of Energy. 5. Termeh, S. V. R., Kornejady, A., Pourghasemi, H. R. and Keesstra, S. (2018), "Flood susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and metaheuristic algorithms," Science of the Total Environment, 615, PP. 438-451. [ DOI:10.1016/j.scitotenv.2017.09.262] [ PMID] 6. Courty, L. G., Rico-Ramirez, M. Á. and Pedrozo-Acuña, A. (2018), "The significance of the spatial variability of rainfall on the numerical simulation of urban floods," Water, Vol. 10, No. 2, 207. [ DOI:10.3390/w10020207] 7. Billi, P., Alemu, Y. T. and Ciampalini, R. (2015), "Increased frequency of flash floods in Dire Dawa, Ethiopia: Change in rainfall intensity or human impact?," Natural Hazards, Vol. 76, No. 2, PP. 1373-1394. [ DOI:10.1007/s11069-014-1554-0] 8. Erena, S. H. and Worku, H. (2018), "Flood risk analysis: causes and landscape-based mitigation strategies in Dire Dawa city, Ethiopia," Geoenvironmental Disasters, Vol. 5, No. 1, PP. 1-19. [ DOI:10.1186/s40677-018-0110-8] 9. Miller, J. D. and Hutchins, M. (2017), "The impacts of urbanisation and climate change on urban flooding and urban water quality: A review of the evidence concerning the United Kingdom," Journal of Hydrology: Regional Studies, Vol. 12, PP. 345-362. [ DOI:10.1016/j.ejrh.2017.06.006] 10. Norouzi, G. and Taslimi, M. (2012), "The impact of flood damages on production of Iran's Agricultural Sector," Middle-East Journal of Scientific Research, Vol. 12, PP. 921-926. 11. Cloke, H. L. and Pappenberger, F. (2009), "Ensemble flood forecasting: A review," Journal of hydrology, Vol. 375, No. 3-4, PP. 613-626. [ DOI:10.1016/j.jhydrol.2009.06.005] 12. Wu, S. J., Lien, H. C. and Chang, C. H. (2010), "Modeling risk analysis for forecasting peak discharge during flooding prevention and warning operation," Stochastic Environmental Research and Risk Assessment, Vol. 24, No. 8, PP. 1175-1191. [ DOI:10.1007/s00477-010-0436-6] 13. Wang, Y., Hong, H., Chen, W., Li, S., Panahi, M., Khosravi, K., Shirzadi, A., Shahabi, H., Panahi, S., Costachek, R. and Costache, R. (2019), "Flood susceptibility mapping in Dingnan County (China) using adaptive neuro-fuzzy inference system with biogeography-based optimization and imperialistic competitive algorithm," Journal of environmental management, Vol. 247, PP. 712-729. [ DOI:10.1016/j.jenvman.2019.06.102] [ PMID] 14. Dano, U. L., Balogun, A. L., Matori, A. N., Wan Yusouf, K., Abubakar, I. R., Said Mohamed, M. A., Aina, Y. A. and Pradhan, B. (2019), "Flood susceptibility mapping using GIS-based analytic network process: A case study of Perlis, Malaysia," Water, Vol. 11, No. 3, PP. 615. [ DOI:10.3390/w11030615] 15. Dobler, C., Bürger, G. and Stötter, J. (2012), "Assessment of climate change impacts on flood hazard potential in the Alpine Lech watershed," Journal of Hydrology, Vol. 460, PP. 29-39. [ DOI:10.1016/j.jhydrol.2012.06.027] 16. Das, S. (2019), "Geospatial mapping of flood susceptibility and hydro-geomorphic response to the floods in Ulhas basin, India," Remote Sensing Applications: Society and Environment, Vol. 14, PP. 60-74. [ DOI:10.1016/j.rsase.2019.02.006] 17. Diaconu, D. C., Costache, R. and Popa, M. C. (2021), "An overview of flood risk analysis methods," Water, Vol. 13, No. 4, PP. 474. [ DOI:10.3390/w13040474] 18. Chakhar, S. and Martel, J. M. (2003), "Enhancing geographical information systems capabilities with multi-criteria evaluation functions," Journal of geographic information and decision analysis, Vol. 7, No. 2, PP. 47-71. 19. Bordbar, M., Aghamohammadi, H., Pourghasemi, H. R. and Azizi, Z. (2022), "Multi-hazard spatial modeling via ensembles of machine learning and meta-heuristic techniques," Scientific Reports, Vol. 12, No. 1, PP. 1-17. [ DOI:10.1038/s41598-022-05364-y] [ PMID] [ PMCID] 20. Falah, F., Rahmati, O., Rostami, M., Ahmadisharaf, E., Daliakopoulos, I. N. and Pourghasemi, H. R. (2019), "Artificial neural networks for flood susceptibility mapping in data-scarce urban areas," In Spatial modeling in GIS and R for Earth and Environmental Sciences, Elsevier, PP. 323-336. [ DOI:10.1016/B978-0-12-815226-3.00014-4] 21. Avand, M., Moradi, H. R. and Ramazanzadeh Lasboyee, M. (2021), "Spatial prediction of future flood risk: an approach to the effects of climate change" Geosciences, Vol. 11, No. 1, PP. 25. [ DOI:10.3390/geosciences11010025] 22. Choubin, B., Moradi, E., Golshan, M., Adamowski, J., Sajedi-Hosseini, F. and Mosavi, A. (2019), "An ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines," Science of the Total Environment, Vol. 651, PP. 2087-2096. [ DOI:10.1016/j.scitotenv.2018.10.064] [ PMID] 23. Kia, M. B., Pirasteh, S., Pradhan, B., Mahmud, A. R., Sulaiman, W. N. A. and Moradi, A. (2012), "An artificial neural network model for flood simulation using GIS: Johor River Basin, Malaysia," Environmental earth sciences, Vol. 67, No. 1, PP. 251-264. [ DOI:10.1007/s12665-011-1504-z] 24. Muñoz, D. F., Muñoz, P., Moftakhari, H. and Moradkhani, H. (2021), "From local to regional compound flood mapping with deep learning and data fusion techniques," Science of the Total Environment, Vol. 782, 146927. [ DOI:10.1016/j.scitotenv.2021.146927] 25. Zhao, G., Pang, B., Xu, Z., Yue, J. and Tu, T. (2018), "Mapping flood susceptibility in mountainous areas on a national scale in China," Science of the Total Environment, Vol. 615, PP. 1133-1142. [ DOI:10.1016/j.scitotenv.2017.10.037] [ PMID] 26. Abdelkarim, A., Al-Alola, S. S., Alogayell, H. M., Mohamed, S. A., Alkadi, I. I. and Ismail, I. Y. (2020), "Integration of GIS-based multicriteria decision analysis and analytic hierarchy process to assess flood hazard on the Al-Shamal train pathway in Al-Qurayyat region, kingdom of Saudi Arabia," Water, Vol. 12, No. 6, PP. 1702. [ DOI:10.3390/w12061702] 27. Cabrera, J. S. and Lee, H. S. (2019), "Flood-prone area assessment using GIS-based multi-criteria analysis: a case study in Davao Oriental, Philippines," Water, Vol. 11, No. 11, PP. 2203. [ DOI:10.3390/w11112203] 28. Cabrera, J. S. and Lee, H. S. (2020), "Flood risk assessment for Davao Oriental in the Philippines using geographic information system‐based multi‐criteria analysis and the maximum entropy model," Journal of Flood Risk Management, Vol. 13, No. 2, e12607. [ DOI:10.1111/jfr3.12607] 29. Hadipour, V., Vafaie, F. and Deilami, K. (2020), "Coastal flooding risk assessment using a GIS-based spatial multi-criteria decision analysis approach," Water, Vol. 12, No. 9, PP. 2379. [ DOI:10.3390/w12092379] 30. Souissi, D., Zouhri, L., Hammami, S., Msaddek, M. H., Zghibi, A. and Dlala, M. (2020), "GIS-based MCDM-AHP modeling for flood susceptibility mapping of arid areas, southeastern Tunisia," Geocarto International, Vol. 35, No. 9, PP. 991-1017. [ DOI:10.1080/10106049.2019.1566405] 31. Malczewski, J. and Rinner, C. (2015), "Multicriteria decision analysis in geographic information science," Vol. 1, PP. 55-77. [ DOI:10.1007/978-3-540-74757-4] 32. Jahan, A. Mustapha, F. Sapuan, S. M. Ismail, M. Y. and Bahraminasab, M. (2012), "A framework for weighting of criteria in ranking stage of material selection process". The International Journal of Advanced Manufacturing Technology, Vol. 58, PP. 411-420. [ DOI:10.1007/s00170-011-3366-7] 33. Gao, R. Nam, H. O. Ko, W. I. and Jang, H. (2017), "National options for a sustainable nuclear energy system: MCDM evaluation using an improved integrated weighting approach," Energies, Vol. 10, No. 12, PP. 1-24. [ DOI:10.3390/en10122017] 34. Deepa, N. Ganesan, K. Srinivasan, K. and Chang, C. Y. (2019), "Realizing sustainable development via modified integrated weighting MCDM model for ranking agrarian dataset," Sustainability, Vol. 11, No. 21, 6060, PP. 1-20. [ DOI:10.3390/su11216060] 35. Raol, J. R. (2009), "Multi-sensor data fusion with MATLAB," CRC press. [ DOI:10.1201/9781439800058] 36. Beynon, M., Cosker, D. and Marshall, D. (2001), "An expert system for multi-criteria decision making using Dempster Shafer theory," Expert Systems with Applications, Vol. 20, No. 4, PP. 357-367. [ DOI:10.1016/S0957-4174(01)00020-3] 37. Delavar, M. R. and Sadrykia, M. (2020), "Assessment of enhanced Dempster-Shafer theory for uncertainty modeling in a GIS-based seismic vulnerability assessment model, case study-Tabriz city," ISPRS International Journal of Geo-Information, Vol. 9, No. 4, 195. [ DOI:10.3390/ijgi9040195] 38. Tella, A. and Balogun, A. L. (2020), "Ensemble fuzzy MCDM for spatial assessment of flood susceptibility in Ibadan, Nigeria," Natural Hazards, Vol. 104, No. 3, PP. 2277-2306. [ DOI:10.1007/s11069-020-04272-6] 39. Kanani-Sadat, Y., Arabsheibani, R., Karimipour, F. and Nasseri, M. (2019), "A new approach to flood susceptibility assessment in data-scarce and ungauged regions based on GIS-based hybrid multi criteria decision-making method," Journal of hydrology, Vol. 572, PP. 17-31. [ DOI:10.1016/j.jhydrol.2019.02.034] 40. Nsangou, D., Kpoumié, A., Mfonka, Z., Ngouh, A. N., Fossi, D. H., Jourdan, C., Mbele H. Z., Mouncherou O. F., Vandervaere, J. and Ngoupayou, J. R. N. (2022), "Urban flood susceptibility modelling using AHP and GIS approach: case of the Mfoundi watershed at Yaoundé in the South-Cameroon plateau," Scientific African, Vol. 15, No. e01043, PP. 1-16. [ DOI:10.1016/j.sciaf.2021.e01043] 41. Vignesh, K. S., Anandakumar, I., Ranjan, R. and Borah, D. (2021), "Flood vulnerability assessment using an integrated approach of multi-criteria decision-making model and geospatial techniques," Modeling Earth Systems and Environment, Vol. 7, No. 2, PP. 767-781. [ DOI:10.1007/s40808-020-00997-2] 42. Yariyan, P., Avand, M., Abbaspour, R.A., Torabi Haghighi, A., Costache, R., Ghorbanzadeh, O., Janizadeh, S. and Blaschke, T. (2020), "Flood susceptibility mapping using an improved analytic network process with statistical models," Geomatics, Natural Hazards and Risk, Vol. 11, No. 1, PP.2282-2314. [ DOI:10.1080/19475705.2020.1836036] 43. Zoratipour, A. and Cheraghi, M. (2021), "Combined Application of Multi-Criteria Decision-Making Methods and Remote Sensing Systems for Flood Cellular Zoning of Abolabbas River Basin in Khuzestan Province," Irrigation Sciences and Engineering, Vol. 44, No. 4, PP. 109-122. (In Persian) 44. Saberifar, R. and Shokri, H. (2019), "Zoning the Risk of Flood in Birjand," Town and Country Planning, Vol. 11, No. 1, PP. 159-178. (In Persian) 45. Khodaie, A. and Zandi, R. (2022), "Identification of flood risk zoning areas based on multi-criteria decision making and neural network model, case study: Khodaafarin Watershed," Watershed Engineering and Management, Vol. 14, No. 4, PP. 549-562. (In Persian) 46. Saaty, T. L. (1980), "The AHP: Planning, Priority Setting," Resource Allocation, McGrraw-Hill, New York. 47. Saaty, T. L. (1994), "Fundamentals of decision making and priority theory with the analytic hierarchy process," RWS publications. 48. Munier, N. (2011), "A strategy for using multicriteria analysis in decision-making: a guide for simple and complex environmental projects," Springer Science and Business Media. [ DOI:10.1007/978-94-007-1512-7] 49. Abdı, A., Bouamrane, A., Karech, T., Dahri, N. and Kaouachi, A. (2021), "Landslide Susceptibility Mapping Using GIS-based Fuzzy Logic and the Analytical Hierarchical Processes Approach: A Case Study in Constantine (North-East Algeria)," Geotechnical and Geological Engineering, Vol. 39, No. 8, PP. 5675-5691. [ DOI:10.1007/s10706-021-01855-3] 50. Forman, E. H. and Gass, S. I. (2001), "The analytic hierarchy process-an exposition," Operations research, Vol. 49, No. 4, PP. 469-486. [ DOI:10.1287/opre.49.4.469.11231] 51. Vaidya, O. S. and Kumar, S. (2006), "Analytic hierarchy process: An overview of applications," European Journal of operational research, Vol. 169, No. 1, PP. 1-29. [ DOI:10.1016/j.ejor.2004.04.028] 52. Barzilai, J. (1998), "On the decomposition of value functions," Operations Research Letters, Vol. 22, No. 4-5, PP. 159-170. [ DOI:10.1016/S0167-6377(98)00015-7] 53. Halder, B., Bandyopadhyay, J. and Banik, P. (2020), "Assessment of hospital sites' suitability by spatial information technologies using AHP and GIS-based multi-criteria approach of Rajpur-Sonarpur Municipality," Modeling Earth Systems and Environment, Vol. 6, No. 4, PP. 2581-2596. [ DOI:10.1007/s40808-020-00852-4] 54. Şener, Ş., Sener, E. and Karagüzel, R. (2011), "Solid waste disposal site selection with GIS and AHP methodology: a case study in Senirkent-Uluborlu (Isparta) Basin, Turkey," Environmental monitoring and assessment, Vol. 173, No. 1, PP. 533-554. [ DOI:10.1007/s10661-010-1403-x] [ PMID] 55. Xu, J. H. (2002), "Mathematical methods in contemporary geography," China Higher Education Press, Beijing, 224230. 56. Rezaei, J. (2015), "Best-worst multi-criteria decision-making method," Omega, Vol. 53, PP. 49-57. [ DOI:10.1016/j.omega.2014.11.009] 57. Safarzadeh, S., Khansefid, S. and Rasti-Barzoki, M. (2018), "A group multi-criteria decision-making based on best-worst method." Computers and Industrial Engineering, Vol. 126, PP. 111-121. [ DOI:10.1016/j.cie.2018.09.011] 58. Sentz, K. and Ferson, S. (2002), "Combination of evidence in Dempster-Shafer theory," System Science and Industrial Engineering Department, Binghamton University, State University of New York: New York, NY, USA. [ DOI:10.2172/800792] [ PMID] 59. Dempster, A. P. (1968), "Upper and lower probabilities generated by a random closed interval," The Annals of Mathematical Statistics, PP. 957-966. [ DOI:10.1214/aoms/1177698328] 60. Shafer, G. A (1978), "Mathematical Theory of Evidence" Princeton University Press, Princeton, NJ, USA. 61. Kaltsounidis, A. and Karali, I. (2020), "Dempster-shafer theory: how constraint programming can help," In International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, Springer, Cham, PP. 354-367. [ DOI:10.1007/978-3-030-50143-3_27] [ PMCID] 62. Saaty, T. L. (2008), "Decision making with the analytic hierarchy process," International journal of services sciences, Vol. 1, No. 1, PP. 83-98. [ DOI:10.1504/IJSSCI.2008.017590] 63. Mojaddadi, H., Pradhan, B., Nampak, H., Ahmad, N. and Ghazali, A. H. B. (2017), "Ensemble machine-learning-based geospatial approach for flood risk assessment using multi-sensor remote-sensing data and GIS," Geomatics, Natural Hazards and Risk, Vol. 8, No. 2, PP. 1080-1102. [ DOI:10.1080/19475705.2017.1294113] 64. Chakraborty, S. and Mukhopadhyay, S. (2019), "Assessing flood risk using analytical hierarchy process (AHP) and geographical information system (GIS): application in Coochbehar district of West Bengal, India," Natural hazards, No. 99, PP. 247-274. [ DOI:10.1007/s11069-019-03737-7] 65. Mitra, R. Saha, P. and Das, J. (2022), "Assessment of the performance of GIS-based analytical hierarchical process (AHP) approach for flood modelling in Uttar Dinajpur district of West Bengal, India," Geomatics, Natural Hazards and Risk, Vol. 13, No. 1, PP. 2183-2226. [ DOI:10.1080/19475705.2022.2112094] 66. Hammami, S. Zouhri, L. Souissi, D. Souei, A. Zghibi, A. Marzougui, A. and Dlala, M. (2019), "Application of the GIS based multi-criteria decision analysis and analytical hierarchy process (AHP) in the flood susceptibility mapping (Tunisia)," Arabian Journal of Geosciences, Vol. 12, PP. 1-16. [ DOI:10.1007/s12517-019-4754-9] 67. Karimipour, H. Alesheikh, A. A. (2021), "Location of Solar Power Plants by Combining the Best-worst Methods, Danp, Copras and TOPSIS Case Study of Fars Province," Journal of Geomatics Science and Technology, Vol. 10, No. 3, PP. 183-199. (In Persian) 68. Shahabi, H., Shirzadi, A., Ghaderi, K., Omidvar, E., Al-Ansari, N., Clague, J. J., Geertsema, M., Khosravi, K., Amini, A., Bahrami, S., Rahmati, O, Habibi, K, , Mohammadi, A., Nguyen, H., Melesse. A. M., Ahmad, B. B., Ahmad, A. (2020), "Flood detection and susceptibility mapping using sentinel-1 remote sensing data and a machine learning approach: Hybrid intelligence of bagging ensemble based on k-nearest neighbor classifier," Remote Sensing, Vol. 12No. 2, 266. [ DOI:10.3390/rs12020266] 69. Li, K., Wu, S., Dai, E. and Xu, Z. (2012), "Flood loss analysis and quantitative risk assessment in China," Natural hazards, Vol. 63, No. 2, PP. 737-760. [ DOI:10.1007/s11069-012-0180-y] 70. Hong, H., Panahi, M., Shirzadi, A., Ma, T., Liu, J., Zhu, A. X., Chen, W., Kougias, I. and Kazakis, N. (2018), "Flood susceptibility assessment in Hengfeng area coupling adaptive neuro-fuzzy inference system with genetic algorithm and differential evolution," Science of the total Environment, Vol. 621, PP. 1124-1141. [ DOI:10.1016/j.scitotenv.2017.10.114] [ PMID] 71. Moore, I. D., Grayson, R. B. and Ladson, A. R. (1991), "Digital terrain modelling: a review of hydrological, geomorphological, and biological applications," Hydrological processes, Vol. 5, No. 1, PP. 3-30. [ DOI:10.1002/hyp.3360050103] 72. Naito, A. T. and Cairns, D. M. (2011), "Relationships between Arctic shrub dynamics and topographically derived hydrologic characteristics," Environmental Research Letters, Vol. 6, No. 4, 045506. [ DOI:10.1088/1748-9326/6/4/045506] 73. Ponce, V. M. and Hawkins, R. H. (1996), "Runoff curve number: Has it reached maturity?," Journal of hydrologic engineering, Vol. 1, No. 1, PP. 11-19. [ DOI:10.1061/(ASCE)1084-0699(1996)1:1(11)] 74. Gabriels, D. (2006), "Assessing the modified Fournier index and the precipitation concentration index for some European countries," Soil erosion in Europe, PP. 675-684. [ DOI:10.1002/0470859202.ch48] 75. Kumar, R. and Acharya, P. (2016), "Flood hazard and risk assessment of 2014 floods in Kashmir Valley: a space-based multisensor approach," Natural Hazards, Vol. 84, No. 1, PP. 437-464. [ DOI:10.1007/s11069-016-2428-4] 76. Sahraei, R. Kanani‐Sadat, Y. Homayouni, S. Safari, A. Oubennaceur, K. and Chokmani, K. (2022), "A novel hybrid GIS‐based multi‐criteria decision‐making approach for flood susceptibility analysis in large ungauged watersheds," Journal of Flood Risk Management, e12879, PP. 1-26. [ DOI:10.1111/jfr3.12879]
|