[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Browse::
Journal Info::
Guide for Authors::
Submit Manuscript::
Articles archive::
For Reviewers::
Contact us::
Site Facilities::
Reviewers::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 12, Issue 2 (1-2023) ::
JGST 2023, 12(2): 47-61 Back to browse issues page
Determination of the susceptible areas to wheat rust outbreak using threshold values and satellite images
Parvin Hasanteimouri * , Mohamadreza Mobasheri
Abstract:   (880 Views)
Wheat is one of the most important grain crop in the world . This kind of plants getting infected by various natural and human factors. Occurrence of disease in this crop may cause disturbance in the circle of economic and management. Therefore prediction and prevention of this disease is one of the main concerns for managers. The method that can help to predict the conditions suitable for disease outbreak can be highly useful. So to achieve this goal, it is tried to study the environmental parameters that makes this disease occur. Then, based on the obtained parameters and using satellite images, the areas that have the potential of the disease outbreak was detected. The study area in this article is Argentina. MODIS satellite images with a spatial resolution of one kilometer is used. Based on previous researches, the parameters such as air temperature, humidity and greenness are the most important parameters to for occurrence of wheat rust disease. The output of this work is an image with two classes of potential zone for rust outbreak and safe zone. The ranges for air temperature, air humidity and greenness for the occurrence of the disease was introduced. Finally an algorithm for identification of the potential zone was introduced. According to the results obtained in this study, the temperature between 2 and 37 degrees Celsius, humidity more than 19% and the NDVI highre than 0. 3 was suitable for the disease outbreak. The overall accuracy in identification of these zones was 90. 70 percent.
Article number: 4
Keywords: wheat rust, temperature, humidity, Vegetation cover, satellite image, remote sensing.
Full-Text [PDF 419 kb]   (691 Downloads)    
Type of Study: Research | Subject: Photo&RS
Received: 2021/10/28
References
1. Belasque,L ,. Gasparoto. M. C. (2008). "Detection of mechanical and disease stresses in citrus plants by fluorescence spectroscopy. " OSA publishing , Applied Optics 47(11): 1922_1926. [DOI:10.1364/AO.47.001922]
2. Roelfs,A. P. ,R. P. Singh. (1992). "Rust Diseases of Wheat: Concepts and methods of disease management. " Mexico, D. F. : CIMMYT. 81 pages.
3. Sankaran,S. ,A. Mishra,R. Ehsani. (2010). "A review of advanced techniques for detecting plant diseases. " Computers and Electronics in Agriculture , 72(1): 1_13. [DOI:10.1016/j.compag.2010.02.007]
4. Omrani,E. , Mohtasabi,S. , Rafiee,Sh. , Hosseinpour,S. (2013). "A review on methods used in detection of plant diseases. " 5122_5136.
5. Nagarajan. S. S. H. (1976). "Preliminary studies on forecasting wheat stem rust appearance. " Elsevier Scientific Publishing Company. Agric. Meteorol , pp. 17:281-289. [DOI:10.1016/0002-1571(76)90032-7]
6. Melugin,S. ,S. William. (1984). "Denelopement of Regional Models that Use Meteorological Variables for Predicting Stripe Rust Disease on WInter Wheat. " Climate and Applied Meteorology , 23, 1234_1240. https://doi.org/10.1175/1520-0450(1984)023<1234:DORMTU>2.0.CO;2 [DOI:10.1175/1520-0450(1984)0232.0.CO;2]
7. Moshou, D. , C. Bravo, J. West, S. Wahlen, A. McCartney and H. Ramon. (2004). "Automatic detection of 'yellow rust' in wheat using reflectance measurements and neural networks. " Computers and Electronics in Agriculture , 44: 173_188. [DOI:10.1016/j.compag.2004.04.003]
8. Wang,H. ,Z. Ma. (2011). "Prediction of Wheat Stripe Rust Based on Support Vector Machine. " IEEE , 379_383. [DOI:10.1109/ICNC.2011.6022095]
9. Dutta, S., Singh, S. K., & Khullar, M. (2014). A case study on forewarning of yellow rust affected areas on wheat crop using satellite data. Journal of the Indian Society of Remote Sensing, 42(2), 335-342. [DOI:10.1007/s12524-013-0329-5]
10. Krishna, G. (2014). "ASSESSING WHEAT YELLOW RUST DISEASE THROUGH HYPERSPECTRALREMOTE SENSING. " The International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences , Volume XL-8. [DOI:10.5194/isprsarchives-XL-8-1413-2014]
11. Ashourloo,D. ,M. R. Mobasheri. (2014). "Developing Two Spectral Disease Indices for Detection of Wheat Leaf Rust (Pucciniatriticina). " Remote Sensing , 6, 4723-4740. [DOI:10.3390/rs6064723]
12. Wakie, T. T., Kumar, S., Senay, G. B., Takele, A., & Lencho, A. (2016). Spatial prediction of wheat septoria leaf blotch (Septoria tritici) disease severity in Central Ethiopia. Ecological Informatics, 36, 15-30. [DOI:10.1016/j.ecoinf.2016.09.003]
13. Pryzant, R., Ermon, S., & Lobell, D. (2017). Monitoring Ethiopian wheat fungus with satellite imagery and deep feature learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (pp. 39-47). [DOI:10.1109/CVPRW.2017.196]
14. Mobasheri,M. R,. Ranjbar,S.,(2017). "Diagnosis of fields infected with wheat rust disease Using Landsat images". Journal of Applied researches in Geographical Sciences, 44:7_24.
15. Chen, D., Shi, Y., Huang, W., Zhang, J., & Wu, K. (2018). Mapping wheat rust based on high spatial resolution satellite imagery. Computers and Electronics in Agriculture, 152, 109-116. [DOI:10.1016/j.compag.2018.07.002]
16. Mobasheri,M. R,. Khesali,E., (2019). " Prediction of areas at risk of frost using the NEAT model ". Scientific - Research Quarterly of Geographical Data (SEPEHR), 28: 41_52.
17. Mobasheri, M. R,. Darouei, P., (2019). "Wheat Leaf Rust Disease Severity Estimation Using Reflectance [DOI:10.29252/jgit.6.4.17]
18. Spectrum Coding Methods. " Journal of Geospatial Information Technology. 6(4):18_30.
19. Ruan, C., Dong, Y., Huang, W., Huang, L., Ye, H., Ma, H., ... & Ren, Y. (2021). Prediction of Wheat Stripe Rust Occurrence with Time Series Sentinel-2 Images. Agriculture, 11(11), 1079. [DOI:10.3390/agriculture11111079]
20. Guo, A., Huang, W., Dong, Y., Ye, H., Ma, H., Liu, B., ... & Geng, Y. (2021). Wheat yellow rust detection using UAV-based hyperspectral technology. Remote Sensing, 13(1), 123. [DOI:10.3390/rs13010123]
21. Mobasheri, M. R,. Khesali,E,. Ghorbani,. A. R. ,(2018). "An Attempt in Presenting a Model for Temperature Determination at Near Land Surface Using Modis Image. " 13th Symposium on Advances in Sceince and Technoligy.
22. Peng, G. , Li, J. , Chen, Y. , Norizan, A. P. , & Tay, L. (2006). "High-resolution surface relative humidity computation using MODIS image in Peninsular Malaysia. " Chinese Geographical Science , 16(3), 260-264. [DOI:10.1007/s11769-006-0260-6]
23. Javadnia,E. M. R. Mobasheri. (2009). "MODIS NDVI quality enhancement using ASTER images. " Journal of agricultural science and technology , pp. 11,549-558.
24. Sokolova,M. , N. Japkowicz, and S. Szpakowicz. (2006). "Beyond accuracy, F-score and ROC: a family of discriminant measures for performance evaluation. " in Australasian Joint Conference on Artificial Intelligence , pp. 1015-1021. [DOI:10.1007/11941439_114]
25. Anderson. A. (2008). "A thermal-based remote sensing techniqus for routins mapping of land-surface carbon, water and energy fluxes from field to regional. " Remote Sensing of Environment , pp. 112(12): p. 4227-4241. [DOI:10.1016/j.rse.2008.07.009]
26. Galway, J. (1956). "The Lifted Index as a Predictor of Latent Instability. " Blamer Meteor , pp. Soc: 37,528-59. [DOI:10.1175/1520-0477-37.10.528]
27. Kaufman,Y. J, B. C. Gao. (1992). "Remote sensing of water vapor in the near IR from EOS/MODIS. " Geoscience and Remote sensing , pp. 30(5),871-884. [DOI:10.1109/36.175321]
28. KNMI. (2000). "Koninklijk Nederland Meteorological Institut".
29. Hedayatifard, M. (2014). "Interactive selection of regions with specific climatological parameters using MODIS images. " Master of Science, KNT University.
30. Buck, A. L. , J. Appl. (1981). "New equations for computing vapor pressure and enhancement factor. " Meteorol , 20, 1527-1532. https://doi.org/10.1175/1520-0450(1981)020<1527:NEFCVP>2.0.CO;2 [DOI:10.1175/1520-0450(1981)0202.0.CO;2]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

hasanteimouri P, mobasheri M. Determination of the susceptible areas to wheat rust outbreak using threshold values and satellite images. JGST 2023; 12 (2) : 4
URL: http://jgst.issgeac.ir/article-1-1061-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 12, Issue 2 (1-2023) Back to browse issues page
نشریه علمی علوم و فنون نقشه برداری Journal of Geomatics Science and Technology