[صفحه اصلی ]   [Archive] [ English ]  
:: صفحه اصلي :: درباره نشريه :: آخرين شماره :: تمام شماره‌ها :: جستجو :: ثبت نام :: ارسال مقاله :: تماس با ما ::
بخش‌های اصلی
صفحه اصلی::
اطلاعات نشریه::
برای نویسندگان::
آرشیو مجله و مقالات::
برای داوران::
تماس با ما::
امکانات پایگاه::
::
جستجو در پایگاه

جستجوی پیشرفته
..
دریافت اطلاعات پایگاه
نشانی پست الکترونیک خود را برای دریافت اطلاعات و اخبار پایگاه، در کادر زیر وارد کنید.
..
پایگاه های نمایه کننده







 
..
آمار سایت
تعداد مشاهده ی مقالات: 2640788

مقالات منتشر شده: 653
نرخ پذیرش: 73.83
نرخ رد: 17.75

میانگین دریافت تا تصمیم‌گیری اولیه: 5 تا 10 روز
میانگین دریافت تا پذیرش: 190 روز
____
..
:: دوره 12، شماره 3 - ( 12-1401 ) ::
دوره 12 شماره 3 صفحات 15-1 برگشت به فهرست نسخه ها
بررسی توانایی شبکه‌های عصبی کانولوشن سه‌بعدی و شبکه‌های عصبی بازگشتی بر طبقه‌بندی دقیق‌تر محصولات کشاورزی با استفاده از تصاویر سری زمانی نوری
مریم تیموری* ، مهدی مختارزاده
چکیده:   (646 مشاهده)
یکی از چالش‌های جدی در حوزه سنجش‌ازدور، استخراج ویژگی‌های مناسب از داده‌های ماهواره‌ای می‌باشد. با ظهور نسل جدیدی از شبکه‌های عصبی عمیق، قابلیت استخراج ویژگی‌ها و همچنین طبقه‌بندی دقیق محصولات به طور اتوماتیک امکانپذیر شده است. از سویی، استخراج ویژگی‌های مناسب می‌تواند تا حدی اثرات شباهت طیفی را در شناسایی محصولات مختلف کاهش دهند و باعث بهبود دقت طبقه‌بندی محصولات شوند. همچنین استفاده از داده‌های چند زمانه در طول دوره رشد، اطلاعات مفیدی درباره محصولات در اختیار محققین قرار می‌دهد. در این راستا، باهدف دستیابی به ویژگی‌های مناسب از تصاویر سری زمانی، سه روش شبکه‌های عصبی کانولوشن سه‌بعدی، شبکه عصبی حافظه طولانی کوتاه‌مدت و واحد بازگشتی دروازه‌ای در این تحقیق مورد بررسی و ارزیابی قرار گرفتند. در معماری بررسی شده برای شبکه عصبی کانولوشن سه‌بعدی، تلاش بر آن شد که بهترین بردارهای ویژگی زمانی - مکانی از تصاویر استخراج شوند و سپس نتایج بدست آمده از این شبکه با دو روش شبکه‌های بازگشتی مورد مقایسه قرار گیرند. درنهایت، پارامترهای ارزیابی بدست آمده از ماتریس خطا در این تحقیق نشان می‌دهد که شبکه عصبی کانولوشن سه‌بعدی، با حصول دقت کلی 90.70% و ضریب کاپا 89.37% به ترتیب در حدود 3.50% و 4.00% نسبت به شبکه عصبی حافظه طولانی کوتاه‌مدت توانایی بیشتری در شناسایی محصولات داشته است. همچنین دقت کلی نتایج طبقه‌بندی توسط شبکه واحد بازگشتی دروازه‌ای نزدیک به‌دقت کلی شبکه عصبی کانولوشن سه‌بعدی بوده است و تنها دقت کلی این روش  1.48% از شبکه واحد بازگشتی دروازه‌ای بهتر عمل کرده است. بنابراین نتایج حاصل مؤید کارایی شبکه عصبی کانولوشن سه‌بعدی برای شناسایی و طبقه‌بندی محصولات می‌باشد.
شماره‌ی مقاله: 1
واژه‌های کلیدی: طبقه‌بندی محصولات، تصاویر سری زمانی، شبکه عصبی کانولوشن سه‌بعدی، شبکه عصبی حافظه طولانی کوتاه‌مدت، شبکه واحد بازگشتی دروازه‌ای
متن کامل [PDF 1415 kb]   (232 دریافت)    
نوع مطالعه: پژوهشي | موضوع مقاله: فتوگرامتری و سنجش از دور
دریافت: 1400/1/27
فهرست منابع
1. X.-P. Song, P. V. Potapov, A. Krylov, L. King, C. M. Di Bella, A. Hudson, A. Khan, B. Adusei, S. V. Stehman, and M. C. Hansen, "National-scale soybean mapping and area estimation in the United States using medium resolution satellite imagery and field survey," Remote Sensing of Environment, vol. 190, pp. 383-395, 2017. [DOI:10.1016/j.rse.2017.01.008]
2. D. Haboudane, N. Tremblay, J. R. Miller, and P. Vigneault, "Remote estimation of crop chlorophyll content using spectral indices derived from hyperspectral data," IEEE Transactions on Geoscience and remote Sensing, vol. 46, pp. 423-437, 2008. [DOI:10.1109/TGRS.2007.904836]
3. E. Cloutis, D. Connery, D. Major, and F. Dover, "Airborne multi-spectral monitoring of agricultural crop status: effect of time of year, crop type and crop condition parameter," Remote Sensing, vol. 17, pp. 2579-2601, 1996. [DOI:10.1080/01431169608949094]
4. A. Verhegghen, S. Bontemps, and P. Defourny, "A global NDVI and EVI reference data set for land-surface phenology using 13 years of daily SPOT-VEGETATION observations," International Journal of remote sensing, vol. 35, pp. 2440-2471, 2014. [DOI:10.1080/01431161.2014.883105]
5. S. Niazmardi, S. Homayouni, A. Safari, H. McNairn, J. Shang, and K. Beckett, "Histogram-based spatio-temporal feature classification of vegetation indices time-series for crop mapping," International Journal of Applied Earth Observation and Geoinformation, vol. 72, pp. 34-41, 2018. [DOI:10.1016/j.jag.2018.05.014]
6. N. Kussul, L. Mykola, A. Shelestov, and S. Skakun, "Crop inventory at regional scale in Ukraine: developing in season and end of season crop maps with multi-temporal optical and SAR satellite imagery," European Journal of Remote Sensing, vol. 51, pp. 627-636, 2018. [DOI:10.1080/22797254.2018.1454265]
7. F. Vuolo, M. Neuwirth, M. Immitzer, C. Atzberger, and W.-T. Ng, "How much does multi-temporal Sentinel-2 data improve crop type classification?," International Journal of Applied Earth Observation and Geoinformation, vol. 72, pp. 122-130, 2018. [DOI:10.1016/j.jag.2018.06.007]
8. G. V. Laurin, C. Belli, R. Bianconi, P. Laranci, and D. Papale, "Early mapping of industrial tomato in Central and Southern Italy with Sentinel 2, aerial and RapidEye additional data," The Journal of Agricultural Science, vol. 156, pp. 396-407, 2018. [DOI:10.1017/S0021859618000400]
9. G. Waldhoff, U. Lussem, and G. Bareth, "Multi-Data Approach for remote sensing-based regional crop rotation mapping: A case study for the Rur catchment, Germany," International Journal of Applied Earth Observation and Geoinformation, vol. 61, pp. 55-69, 2017. [DOI:10.1016/j.jag.2017.04.009]
10. D. I. Moody, S. P. Brumby, R. Chartrand, R. Keisler, N. Longbotham, C. Mertes, S. W. Skillman, and M. S. Warren, "Crop classification using temporal stacks of multispectral satellite imagery," in Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XXIII, 2017, p. 101980G. [DOI:10.1117/12.2262804]
11. H. Qiong, W.-b. WU, S. Qian, L. Miao, C. Di, Q.-y. YU, and H.-j. TANG, "How do temporal and spectral features matter in crop classification in Heilongjiang Province, China?," Journal of integrative agriculture, vol. 16, pp. 324-336, 2017. [DOI:10.1016/S2095-3119(15)61321-1]
12. B. Mulianga, A. Bégué, P. Clouvel, and P. Todoroff, "Mapping cropping practices of a sugarcane-based cropping system in Kenya using remote sensing," Remote Sensing, vol. 7, pp. 14428-14444, 2015. [DOI:10.3390/rs71114428]
13. M. Teimouri, M. Mokhtarzade, N. Baghdadi, and C. Heipke, "Fusion of Time-Series Optical and SAR Images Using 3D Convolutional Neural Networks for Crop Classification," Geocarto International, no. just-accepted, pp. 1-16, 2022. [DOI:10.1080/10106049.2022.2095446]
14. T. Xia et al., "Exploring the potential of Chinese GF-6 images for crop mapping in regions with complex agricultural landscapes," International Journal of Applied Earth Observation and Geoinformation, vol. 107, p. 102702, 2022. [DOI:10.1016/j.jag.2022.102702]
15. T. Sakamoto, "Early Classification Method for US Corn and Soybean by Incorporating MODIS-Estimated Phenological Data and Historical Classification Maps in Random-Forest Regression Algorithm," Photogrammetric Engineering & Remote Sensing, vol. 87, no. 10, pp. 747-758, 2021. [DOI:10.14358/PERS.21-00003R2]
16. C. Zhang et al., "Rapid in-season mapping of corn and soybeans using machine-learned trusted pixels from Cropland Data Layer," International Journal of Applied Earth Observation and Geoinformation, vol. 102, p. 102374, 2021. [DOI:10.1016/j.jag.2021.102374]
17. M. E. Paoletti, J. M. Haut, J. Plaza, and A. Plaza, "A new deep convolutional neural network for fast hyperspectral image classification," ISPRS Journal of Photogrammetry and Remote Sensing, vol. 145, pp. 120-147, 2018. [DOI:10.1016/j.isprsjprs.2017.11.021]
18. Z. Deng, H. Sun, S. Zhou, J. Zhao, L. Lei, and H. Zou, "Multi-scale object detection in remote sensing imagery with convolutional neural networks," ISPRS Journal of Photogrammetry and Remote Sensing, vol. 145, pp. 3-22, 2018. [DOI:10.1016/j.isprsjprs.2018.04.003]
19. M. Voelsen, M. Teimouri, F. Rottensteiner, and C. Heipke, "INVESTIGATING 2D AND 3D CONVOLUTIONS FOR MULTITEMPORAL LAND COVER CLASSIFICATION USING REMOTE SENSING IMAGES," ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 3, pp. 271-279, 2022. [DOI:10.5194/isprs-annals-V-3-2022-271-2022]
20. A. Shakya, M. Biswas, and M. Pal, "CNN-based fusion and classification of SAR and Optical data," International Journal of Remote Sensing, vol. 41, no. 22, pp. 8839-8861, 2020. [DOI:10.1080/01431161.2020.1783713]
21. L. Zhong, L. Hu, and H. Zhou, "Deep learning based multi-temporal crop classification," Remote sensing of environment, vol. 221, pp. 430-443, 2019. [DOI:10.1016/j.rse.2018.11.032]
22. H. Zhao, S. Duan, J. Liu, L. Sun, and L. Reymondin, "Evaluation of Five Deep Learning Models for Crop Type Mapping Using Sentinel-2 Time Series Images with Missing Information," Remote Sensing, vol. 13, no. 14, p. 2790, 2021. [DOI:10.3390/rs13142790]
23. S. Ji, C. Zhang, A. Xu, Y. Shi, and Y. Duan, "3D Convolutional Neural Networks for Crop Classification with Multi-Temporal Remote Sensing Images," Remote Sensing, vol. 10, p. 75, 2018. [DOI:10.3390/rs10010075]
24. R. Fernandez-Beltran, T. Baidar, J. Kang and F. Pla, "Rice-yield prediction with multi-temporal sentinel-2 data and 3D CNN: A case study in Nepal "Remote Sensing, vol. 13, p. 1391, 2021. [DOI:10.3390/rs13071391]
25. J. Adrian, V. Sagan and M. Maimaitijiang "Sentinel SAR-optical fusion for crop type mapping using deep learning and Google Earth Engine "ISPRS Journal of Photogrammetry and Remote Sensing, vol. 175, p. 215-235, 2021. [DOI:10.1016/j.isprsjprs.2021.02.018]
26. D. Ienco, R. Gaetano, C. Dupaquier, and P. Maurel, "Land cover classification via multitemporal spatial data by deep recurrent neural networks," IEEE Geoscience and Remote Sensing Letters, vol. 14, pp. 1685-1689, 2017. [DOI:10.1109/LGRS.2017.2728698]
27. D. H. T. Minh, D. Ienco, R. Gaetano, N. Lalande, E. Ndikumana, F. Osman, and P. Maurel, "Deep recurrent neural networks for winter vegetation quality mapping via multitemporal sar sentinel-1," IEEE Geoscience and Remote Sensing Letters, vol. 15, pp. 464-468, 2018. [DOI:10.1109/LGRS.2018.2794581]
28. E. Ndikumana, D. Ho Tong Minh, N. Baghdadi, D. Courault, and L. Hossard, "Deep Recurrent Neural Network for Agricultural Classification using multitemporal SAR Sentinel-1 for Camargue, France," Remote Sensing, vol. 10, p. 1217, 2018. [DOI:10.3390/rs10081217]
29. S. Ji, W. Xu, M. Yang, and K. Yu, "3D convolutional neural networks for human action recognition," IEEE Transactions on pattern analysis and machine intelligence, vol. 35, pp. 221-231, 2012. [DOI:10.1109/TPAMI.2012.59]
30. S. Hochreiter and J. Schmidhuber, "LSTM can solve hard long time lag problems," Advances in neural information processing systems, pp. 473-479, 1997.
31. K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio, "Learning phrase representations using RNN encoder-decoder for statistical machine translation," arXiv preprint arXiv:1406.1078, 2014. [DOI:10.3115/v1/D14-1179]
32. Q. Gao, S. Lim, and X. Jia, "Hyperspectral Image Classification Using Convolutional Neural Networks and Multiple Feature Learning," Remote Sensing, vol. 10, p. 299, 2018. [DOI:10.3390/rs10020299]
33. S. Morell-Monzó, J. Estornell, and M.-T. Sebastiá-Frasquet, "Comparison of Sentinel-2 and high-resolution imagery for mapping land abandonment in fragmented areas," Remote Sensing, vol. 12, no. 12, p. 2062, 2020. [DOI:10.3390/rs12122062]
34. Y.Rezaei, SB. Fatemi, "Principles of Remote Sensing," publications of Azade, 1358.
35. X.-P. Song, P. V. Potapov, A. Krylov, L. King, C. M. Di Bella, A. Hudson, A. Khan, B. Adusei, S. V. Stehman, and M. C. Hansen, "National-scale soybean mapping and area estimation in the United States using medium resolution satellite imagery and field survey," Remote Sensing of Environment, vol. 190, pp. 383-395, 2017. [DOI:10.1016/j.rse.2017.01.008]
36. D. Haboudane, N. Tremblay, J. R. Miller, and P. Vigneault, "Remote estimation of crop chlorophyll content using spectral indices derived from hyperspectral data," IEEE Transactions on Geoscience and remote Sensing, vol. 46, pp. 423-437, 2008. [DOI:10.1109/TGRS.2007.904836]
37. E. Cloutis, D. Connery, D. Major, and F. Dover, "Airborne multi-spectral monitoring of agricultural crop status: effect of time of year, crop type and crop condition parameter," Remote Sensing, vol. 17, pp. 2579-2601, 1996. [DOI:10.1080/01431169608949094]
38. A. Verhegghen, S. Bontemps, and P. Defourny, "A global NDVI and EVI reference data set for land-surface phenology using 13 years of daily SPOT-VEGETATION observations," International Journal of remote sensing, vol. 35, pp. 2440-2471, 2014. [DOI:10.1080/01431161.2014.883105]
39. S. Niazmardi, S. Homayouni, A. Safari, H. McNairn, J. Shang, and K. Beckett, "Histogram-based spatio-temporal feature classification of vegetation indices time-series for crop mapping," International Journal of Applied Earth Observation and Geoinformation, vol. 72, pp. 34-41, 2018. [DOI:10.1016/j.jag.2018.05.014]
40. N. Kussul, L. Mykola, A. Shelestov, and S. Skakun, "Crop inventory at regional scale in Ukraine: developing in season and end of season crop maps with multi-temporal optical and SAR satellite imagery," European Journal of Remote Sensing, vol. 51, pp. 627-636, 2018. [DOI:10.1080/22797254.2018.1454265]
41. F. Vuolo, M. Neuwirth, M. Immitzer, C. Atzberger, and W.-T. Ng, "How much does multi-temporal Sentinel-2 data improve crop type classification?," International Journal of Applied Earth Observation and Geoinformation, vol. 72, pp. 122-130, 2018. [DOI:10.1016/j.jag.2018.06.007]
42. G. V. Laurin, C. Belli, R. Bianconi, P. Laranci, and D. Papale, "Early mapping of industrial tomato in Central and Southern Italy with Sentinel 2, aerial and RapidEye additional data," The Journal of Agricultural Science, vol. 156, pp. 396-407, 2018. [DOI:10.1017/S0021859618000400]
43. G. Waldhoff, U. Lussem, and G. Bareth, "Multi-Data Approach for remote sensing-based regional crop rotation mapping: A case study for the Rur catchment, Germany," International Journal of Applied Earth Observation and Geoinformation, vol. 61, pp. 55-69, 2017. [DOI:10.1016/j.jag.2017.04.009]
44. D. I. Moody, S. P. Brumby, R. Chartrand, R. Keisler, N. Longbotham, C. Mertes, S. W. Skillman, and M. S. Warren, "Crop classification using temporal stacks of multispectral satellite imagery," in Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XXIII, 2017, p. 101980G. [DOI:10.1117/12.2262804]
45. H. Qiong, W.-b. WU, S. Qian, L. Miao, C. Di, Q.-y. YU, and H.-j. TANG, "How do temporal and spectral features matter in crop classification in Heilongjiang Province, China?," Journal of integrative agriculture, vol. 16, pp. 324-336, 2017. [DOI:10.1016/S2095-3119(15)61321-1]
46. B. Mulianga, A. Bégué, P. Clouvel, and P. Todoroff, "Mapping cropping practices of a sugarcane-based cropping system in Kenya using remote sensing," Remote Sensing, vol. 7, pp. 14428-14444, 2015. [DOI:10.3390/rs71114428]
47. M. Teimouri, M. Mokhtarzade, N. Baghdadi, and C. Heipke, "Fusion of Time-Series Optical and SAR Images Using 3D Convolutional Neural Networks for Crop Classification," Geocarto International, no. just-accepted, pp. 1-16, 2022. [DOI:10.1080/10106049.2022.2095446]
48. T. Xia et al., "Exploring the potential of Chinese GF-6 images for crop mapping in regions with complex agricultural landscapes," International Journal of Applied Earth Observation and Geoinformation, vol. 107, p. 102702, 2022. [DOI:10.1016/j.jag.2022.102702]
49. T. Sakamoto, "Early Classification Method for US Corn and Soybean by Incorporating MODIS-Estimated Phenological Data and Historical Classification Maps in Random-Forest Regression Algorithm," Photogrammetric Engineering & Remote Sensing, vol. 87, no. 10, pp. 747-758, 2021. [DOI:10.14358/PERS.21-00003R2]
50. C. Zhang et al., "Rapid in-season mapping of corn and soybeans using machine-learned trusted pixels from Cropland Data Layer," International Journal of Applied Earth Observation and Geoinformation, vol. 102, p. 102374, 2021. [DOI:10.1016/j.jag.2021.102374]
51. M. E. Paoletti, J. M. Haut, J. Plaza, and A. Plaza, "A new deep convolutional neural network for fast hyperspectral image classification," ISPRS Journal of Photogrammetry and Remote Sensing, vol. 145, pp. 120-147, 2018. [DOI:10.1016/j.isprsjprs.2017.11.021]
52. Z. Deng, H. Sun, S. Zhou, J. Zhao, L. Lei, and H. Zou, "Multi-scale object detection in remote sensing imagery with convolutional neural networks," ISPRS Journal of Photogrammetry and Remote Sensing, vol. 145, pp. 3-22, 2018. [DOI:10.1016/j.isprsjprs.2018.04.003]
53. M. Voelsen, M. Teimouri, F. Rottensteiner, and C. Heipke, "INVESTIGATING 2D AND 3D CONVOLUTIONS FOR MULTITEMPORAL LAND COVER CLASSIFICATION USING REMOTE SENSING IMAGES," ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 3, pp. 271-279, 2022. [DOI:10.5194/isprs-annals-V-3-2022-271-2022]
54. A. Shakya, M. Biswas, and M. Pal, "CNN-based fusion and classification of SAR and Optical data," International Journal of Remote Sensing, vol. 41, no. 22, pp. 8839-8861, 2020. [DOI:10.1080/01431161.2020.1783713]
55. L. Zhong, L. Hu, and H. Zhou, "Deep learning based multi-temporal crop classification," Remote sensing of environment, vol. 221, pp. 430-443, 2019. [DOI:10.1016/j.rse.2018.11.032]
56. H. Zhao, S. Duan, J. Liu, L. Sun, and L. Reymondin, "Evaluation of Five Deep Learning Models for Crop Type Mapping Using Sentinel-2 Time Series Images with Missing Information," Remote Sensing, vol. 13, no. 14, p. 2790, 2021. [DOI:10.3390/rs13142790]
57. S. Ji, C. Zhang, A. Xu, Y. Shi, and Y. Duan, "3D Convolutional Neural Networks for Crop Classification with Multi-Temporal Remote Sensing Images," Remote Sensing, vol. 10, p. 75, 2018. [DOI:10.3390/rs10010075]
58. R. Fernandez-Beltran, T. Baidar, J. Kang and F. Pla, "Rice-yield prediction with multi-temporal sentinel-2 data and 3D CNN: A case study in Nepal "Remote Sensing, vol. 13, p. 1391, 2021. [DOI:10.3390/rs13071391]
59. J. Adrian, V. Sagan and M. Maimaitijiang "Sentinel SAR-optical fusion for crop type mapping using deep learning and Google Earth Engine "ISPRS Journal of Photogrammetry and Remote Sensing, vol. 175, p. 215-235, 2021. [DOI:10.1016/j.isprsjprs.2021.02.018]
60. D. Ienco, R. Gaetano, C. Dupaquier, and P. Maurel, "Land cover classification via multitemporal spatial data by deep recurrent neural networks," IEEE Geoscience and Remote Sensing Letters, vol. 14, pp. 1685-1689, 2017. [DOI:10.1109/LGRS.2017.2728698]
61. D. H. T. Minh, D. Ienco, R. Gaetano, N. Lalande, E. Ndikumana, F. Osman, and P. Maurel, "Deep recurrent neural networks for winter vegetation quality mapping via multitemporal sar sentinel-1," IEEE Geoscience and Remote Sensing Letters, vol. 15, pp. 464-468, 2018. [DOI:10.1109/LGRS.2018.2794581]
62. E. Ndikumana, D. Ho Tong Minh, N. Baghdadi, D. Courault, and L. Hossard, "Deep Recurrent Neural Network for Agricultural Classification using multitemporal SAR Sentinel-1 for Camargue, France," Remote Sensing, vol. 10, p. 1217, 2018. [DOI:10.3390/rs10081217]
63. S. Ji, W. Xu, M. Yang, and K. Yu, "3D convolutional neural networks for human action recognition," IEEE Transactions on pattern analysis and machine intelligence, vol. 35, pp. 221-231, 2012. [DOI:10.1109/TPAMI.2012.59]
64. S. Hochreiter and J. Schmidhuber, "LSTM can solve hard long time lag problems," Advances in neural information processing systems, pp. 473-479, 1997.
65. K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio, "Learning phrase representations using RNN encoder-decoder for statistical machine translation," arXiv preprint arXiv:1406.1078, 2014. [DOI:10.3115/v1/D14-1179]
66. Q. Gao, S. Lim, and X. Jia, "Hyperspectral Image Classification Using Convolutional Neural Networks and Multiple Feature Learning," Remote Sensing, vol. 10, p. 299, 2018. [DOI:10.3390/rs10020299]
67. S. Morell-Monzó, J. Estornell, and M.-T. Sebastiá-Frasquet, "Comparison of Sentinel-2 and high-resolution imagery for mapping land abandonment in fragmented areas," Remote Sensing, vol. 12, no. 12, p. 2062, 2020. [DOI:10.3390/rs12122062]
ارسال پیام به نویسنده مسئول

ارسال نظر درباره این مقاله
نام کاربری یا پست الکترونیک شما:

CAPTCHA



XML   English Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Teimouri M, Mokhtarzade M. Investigating three-dimensional convolutional and recurrent neural networks for crop classification using time-series optical images. JGST 2023; 12 (3) : 1
URL: http://jgst.issgeac.ir/article-1-1021-fa.html

تیموری مریم، مختارزاده مهدی. بررسی توانایی شبکه‌های عصبی کانولوشن سه‌بعدی و شبکه‌های عصبی بازگشتی بر طبقه‌بندی دقیق‌تر محصولات کشاورزی با استفاده از تصاویر سری زمانی نوری. علوم و فنون نقشه برداری. 1401; 12 (3) :1-15

URL: http://jgst.issgeac.ir/article-1-1021-fa.html



بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.
دوره 12، شماره 3 - ( 12-1401 ) برگشت به فهرست نسخه ها
نشریه علمی علوم و فنون نقشه برداری Journal of Geomatics Science and Technology