1. N. Kim, K.-J. Ha, N.-W. Park, J. Cho, S. Hong, and Y.-W. Lee, "A comparison between major artificial intelligence models for crop yield prediction: Case study of the midwestern United States, 2006-2015," ISPRS International Journal of Geo-Information, vol. 8, no. 5, p. 240, 2019. [ DOI:10.3390/ijgi8050240] 2. N. Kim et al., "An artificial intelligence approach to prediction of corn yields under extreme weather conditions using satellite and meteorological data," Applied Sciences, vol. 10, no. 11, p. 3785, 2020. [ DOI:10.3390/app10113785] 3. Y. Ma, Z. Zhang, Y. Kang, and M. Özdoğan, "Corn yield prediction and uncertainty analysis based on remotely sensed variables using a Bayesian neural network approach," Remote Sensing of Environment, vol. 259, p. 112408, 2021. [ DOI:10.1016/j.rse.2021.112408] 4. S. Zare Naghadehi, M. Asadi, M. Maleki, S.-M. Tavakkoli-Sabour, J. L. Van Genderen, and S.-S. Saleh, "Prediction of urban area expansion with implementation of MLC, SAM and SVMs' classifiers incorporating artificial neural network using landsat data," ISPRS International Journal of Geo-Information, vol. 10, no. 8, p. 513, 2021. [ DOI:10.3390/ijgi10080513] 5. M. Asadi, A. Oshnooei-Nooshabadi, S.-a. Saleh, F. Habibnezhad, S. Sarafraz-Asbagh, and J. L. Van Genderen, "Simulation of Urban Sprawl by Comparison Cellular Automata-Markov and ANN," 2022. [ DOI:10.20944/preprints202208.0119.v1] 6. Y. Li et al., "A county-level soybean yield prediction framework coupled with XGBoost and multidimensional feature engineering," International Journal of Applied Earth Observation and Geoinformation, vol. 118, p. 103269, 2023. [ DOI:10.1016/j.jag.2023.103269] 7. N. Kim and Y.-W. Lee, "Machine Learning Approaches to Corn Yield Estimation Using Satellite Images and Climate Data: A Case of Iowa State: A Case of Iowa State," Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, vol. 34, no. 4, pp. 383-390, 2016. [ DOI:10.7848/ksgpc.2016.34.4.383] 8. G. Ghazaryan, S. Skakun, S. König, E. E. Rezaei, S. Siebert, and O. Dubovyk, "Crop yield estimation using multi-source satellite image series and deep learning," in IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium, 2020: IEEE, pp. 5163-5166. [ DOI:10.1109/IGARSS39084.2020.9324027] 9. M. Shahhosseini, G. Hu, and S. V. Archontoulis, "Forecasting corn yield with machine learning ensembles," Frontiers in Plant Science, vol. 11, p. 1120, 2020. [ DOI:10.3389/fpls.2020.01120] 10. S. Khaki, L. Wang, and S. V. Archontoulis, "A CNN-RNN framework for crop yield prediction," Frontiers in Plant Science, vol. 10, p. 1750, 2020. [ DOI:10.3389/fpls.2019.01750] 11. S. Cho et al., "A comparative evaluation of multiple meteorological datasets for the rice yield prediction at the county level in South Korea," Korean Journal of Remote Sensing, vol. 37, no. 2, pp. 337-357, 2021. 12. S. Jeong, J. Ko, and J.-M. Yeom, "Predicting rice yield at pixel scale through synthetic use of crop and deep learning models with satellite data in South and North Korea," Science of The Total Environment, vol. 802, p. 149726, 2022. [ DOI:10.1016/j.scitotenv.2021.149726] 13. S. Karthick and N. Gomathi, "IoT-based COVID-19 detection using recalling-enhanced recurrent neural network optimized with golden eagle optimization algorithm," Medical & Biological Engineering & Computing, vol. 62, no. 3, pp. 925-940, 2024. [ DOI:10.1007/s11517-023-02973-1] 14. S. Boriratrit, P. Fuangfoo, C. Srithapon, and R. Chatthaworn, "Adaptive meta-learning extreme learning machine with golden eagle optimization and logistic map for forecasting the incomplete data of solar irradiance," Energy and AI, vol. 13, p. 100243, 2023. [ DOI:10.1016/j.egyai.2023.100243] 15. P. Toscano, A. Castrignanò, S. F. Di Gennaro, A. V. Vonella, D. Ventrella, and A. Matese, "A precision agriculture approach for durum wheat yield assessment using remote sensing data and yield mapping," Agronomy, vol. 9, no. 8, p. 437, 2019. [ DOI:10.3390/agronomy9080437] 16. S. A. Khosravani Shariati and A. Abbasi, "Prediction of wheat yield with precipitation data and normalized index of vegetation difference by machine learning algorithms," presented at the In the 13th International Congress of Civil Engineering, 2023. 17. J. Sun, Z. Lai, L. Di, Z. Sun, J. Tao, and Y. Shen, "Multilevel deep learning network for county-level corn yield estimation in the us corn belt," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 13, pp. 5048-5060, 2020. [ DOI:10.1109/JSTARS.2020.3019046] 18. N.-T. Son et al., "Machine learning approaches for rice crop yield predictions using time-series satellite data in Taiwan," International Journal of Remote Sensing, vol. 41, no. 20, pp. 7868-7888, 2020. [ DOI:10.1080/01431161.2020.1766148] 19. G.-H. Kwak, C.-w. Park, K.-d. Lee, S.-i. Na, H.-y. Ahn, and N.-W. Park, "Potential of hybrid CNN-RF model for early crop mapping with limited input data," Remote Sensing, vol. 13, no. 9, p. 1629, 2021. [ DOI:10.3390/rs13091629] 20. K. Alibabaei, P. D. Gaspar, and T. M. Lima, "Crop yield estimation using deep learning based on climate big data and irrigation scheduling," Energies, vol. 14, no. 11, p. 3004, 2021. [ DOI:10.3390/en14113004] 21. M. Shahhosseini, G. Hu, I. Huber, and S. V. Archontoulis, "Coupling machine learning and crop modeling improves crop yield prediction in the US Corn Belt," Scientific reports, vol. 11, no. 1, p. 1606, 2021-a. [ DOI:10.1038/s41598-020-80820-1] 22. M. Shahhosseini, G. Hu, S. Khaki, and S. V. Archontoulis, "Corn yield prediction with ensemble CNN-DNN," Frontiers in plant science, vol. 12, p. 709008, 2021-b. [ DOI:10.3389/fpls.2021.709008] 23. P. Lang et al., "Integrating environmental and satellite data to estimate county-level cotton yield in Xinjiang Province," Frontiers in Plant Science, vol. 13, p. 1048479, 2023. [ DOI:10.3389/fpls.2022.1048479] 24. M. Rasoulinia and A. Sharifi, "Potato yield estimation using Sentinel-2 satellite images, Case study: Sarab city," Journal of Geomatics Science and Technology, vol. 11, no. 1, pp. 107-116, 2021. 25. M. Ahangarha, M. Saadat Seresht, R. Shahhoseini, and S. Seyyedi, "Crop land change monitoring based on deep learning algorithm using multi-temporal hyperspectral images," Journal of Geomatics Science and Technology, vol. 10, no. 2, pp. 79-89, 2020. 26. L. O. Colombo-Mendoza, M. A. Paredes-Valverde, M. d. P. Salas-Zárate, and R. Valencia-García, "Internet of Things-driven data mining for smart crop production prediction in the peasant farming domain," Applied Sciences, vol. 12, no. 4, p. 1940, 2022. [ DOI:10.3390/app12041940] 27. M. U. Ahmed and I. Hussain, "Prediction of wheat production using machine learning algorithms in northern areas of Pakistan," Telecommunications policy, vol. 46, no. 6, p. 102370, 2022. [ DOI:10.1016/j.telpol.2022.102370] 28. L. Schmidt, M. Odening, J. Schlanstein, and M. Ritter, "Exploring the weather-yield nexus with artificial neural networks," Agricultural Systems, vol. 196, p. 103345, 2022. [ DOI:10.1016/j.agsy.2021.103345] 29. T. Van Klompenburg, A. Kassahun, and C. Catal, "Crop yield prediction using machine learning: A systematic literature review," Computers and electronics in agriculture, vol. 177, p. 105709, 2020. [ DOI:10.1016/j.compag.2020.105709] 30. K. Meghraoui, I. Sebari, J. Pilz, K. Ait El Kadi, and S. Bensiali, "Applied Deep Learning-Based Crop Yield Prediction: A Systematic Analysis of Current Developments and Potential Challenges," Technologies, vol. 12, no. 4, p. 43, 2024. [ DOI:10.3390/technologies12040043] 31. A. Oikonomidis, C. Catal, and A. Kassahun, "Hybrid deep learning-based models for crop yield prediction," Applied artificial intelligence, vol. 36, no. 1, p. 2031822, 2022. [ DOI:10.1080/08839514.2022.2031823] 32. S. Luo, S. Zhang, and H. Cong, "Research on consumer purchasing prediction based on xgboost algorithm," in 2021 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA), 2021: IEEE, pp. 1173-1176. [ DOI:10.1109/ICAICA52286.2021.9497944] 33. A. Mohammadi-Balani, M. D. Nayeri, A. Azar, and M. Taghizadeh-Yazdi, "Golden eagle optimizer: A nature-inspired metaheuristic algorithm," Computers & Industrial Engineering, vol. 152, p. 107050, 2021. [ DOI:10.1016/j.cie.2020.107050] 34. W. Chen, H. Zhang, M. K. Mehlawat, and L. Jia, "Mean-variance portfolio optimization using machine learning-based stock price prediction," Applied Soft Computing, vol. 100, p. 106943, 2021. [ DOI:10.1016/j.asoc.2020.106943] 35. D. Xiong, "Crop growth remote sensing monitoring and its application," Sensors & Transducers, vol. 169, no. 4, p. 174, 2014.
|