1. M. A. Kuddus, E. Tynan, and E. McBryde, "Urbanization: A problem for the rich and the poor?," Journal of Public Health Rev, vol. 41, no. 1, Jan. 2020, doi: 10.1186/s40985-019-0116-0. [ DOI:10.1186/s40985-019-0116-0] 2. "Urbanization." Accessed: Dec. 09, 2023. [Online]. Available: https://un.org/development/desa/pd/content/urbanization-0 3. A. Talib, "International Environmental Modelling and Software Society (iEMSs) 2010 International Congress on Environmental Modelling and Software Modelling for Environment's Sake, Fifth Bienn... Potentiality of ecotourism development of Kirala Kele Partial-Nature-Based wetland the Southern Sri Lanka View project The Use of Probiotics to Optimize Mud Crab Scylla paramamosain Larval Culture. View project Noresah Mohd Shariff Sanjay Gairola Environment and Protected Areas Authority Sharjah," 2010. [Online]. Available: https://www.researchgate.net/publication/235931337 4. X. Sun, C. Zhang, and Q. Tan, "Factors Influencing the Coordinated Development of Urbanization and Its Spatial Effects: A Case Study of Beijing-Tianjin-Hebei Region," Sustainability (Switzerland), vol. 15, no. 5, Mar. 2023, doi: 10.3390/su15054137. [ DOI:10.3390/su15054137] 5. Muhammad Nasar-u-minAllah Bhalli and Abdul Ghaffar, "Use of Geospatial Techniques in Monitoring Urban Expansion and Land Use Change Analysis: A Case of Lahore, Pakistan," Journal of Basic & Applied Sciences, vol. 11, pp. 265-273, Jan. 2015, doi: 10.6000/1927-5129.2015.11.38. [ DOI:10.6000/1927-5129.2015.11.38] 6. A. Rienow, A. Mustafa, L. Krelaus, and C. Lindner, "Modeling urban regions: Comparing random forest and support vector machines for cellular automata," Transactions in GIS, vol. 25, no. 3, pp. 1625-1645, Jun. 2021, doi: 10.1111/tgis.12756. [ DOI:10.1111/tgis.12756] 7. M. Sheykhmousa, M. Mahdianpari, H. Ghanbari, F. Mohammadimanesh, P. Ghamisi, and S. Homayouni, "Support Vector Machine Versus Random Forest for Remote Sensing Image Classification: A Meta-Analysis and Systematic Review," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 13. Institute of Electrical and Electronics Engineers Inc., pp. 6308-6325, 2020. doi: 10.1109/JSTARS.2020.3026724. [ DOI:10.1109/JSTARS.2020.3026724] 8. Y. G. Yuh, W. Tracz, H. D. Matthews, and S. E. Turner, "Application of machine learning approaches for land cover monitoring in northern Cameroon," Ecol Inform, vol. 74, May 2023, doi: 10.1016/j.ecoinf.2022.101955. [ DOI:10.1016/j.ecoinf.2022.101955] 9. Y. O. Ouma, A. Keitsile, B. Nkwae, P. Odirile, D. Moalafhi, and J. Qi, "Urban land-use classification using machine learning classifiers: comparative evaluation and post-classification multi-feature fusion approach," Eur J Remote Sens, vol. 56, no. 1, 2023, doi: 10.1080/22797254.2023.2173659. [ DOI:10.1080/22797254.2023.2173659] 10. Y. Qian, W. Xing, X. Guan, T. Yang, and H. Wu, "Coupling cellular automata with area partitioning and spatiotemporal convolution for dynamic land use change simulation," Science of the Total Environment, vol. 722, Jun. 2020, doi: 10.1016/j.scitotenv.2020.137738. [ DOI:10.1016/j.scitotenv.2020.137738] 11. K. M. Gilbert and Y. Shi, "Land use/land cover change detection and prediction for sustainable urban land management in Kigali City, Rwanda," vol. 2023, no. 2, pp. 62-75, [Online]. Available: https://publish.mersin.edu.tr/index.php/alm 12. W. I. Md.Mustaquim, "Assessment of Land Use/Land Cover Change and its Future Prediction Using CA-Markove with ANN Simulation for Berhampore, West Bengal, India," Res Sq, 2023, doi:
https://doi.org/10.21203/rs.3.rs-3407386/v1 [ DOI:10.21203/rs.3.rs-3407386/v1.] 13. P. Thanh Noi and M. Kappas, "Comparison of Random Forest, k-Nearest Neighbor, and Support Vector Machine Classifiers for Land Cover Classification Using Sentinel-2 Imagery," Sensors (Basel), vol. 18, no. 1, Dec. 2017, doi: 10.3390/s18010018. [ DOI:10.3390/s18010018] 14. S. K. Hanoon, A. F. Abdullah, H. Z. M. Shafri, and A. Wayayok, "Urban Growth Forecast Using Machine Learning Algorithms and GIS-Based Novel Techniques: A Case Study Focusing on Nasiriyah City, Southern Iraq," ISPRS Int J Geoinf, vol. 12, no. 2, Feb. 2023, doi: 10.3390/ijgi12020076. [ DOI:10.3390/ijgi12020076] 15. A. Rash, Y. Mustafa, and R. Hamad, "Quantitative assessment of Land use/land cover changes in a developing region using machine learning algorithms: A case study in the Kurdistan Region, Iraq," Heliyon, vol. 9, no. 11, Nov. 2023, doi: 10.1016/j.heliyon.2023.e21253. [ DOI:10.1016/j.heliyon.2023.e21253] 16. V. K. Rana and T. M. Venkata Suryanarayana, "Performance evaluation of MLE, RF and SVM classification algorithms for watershed scale land use/land cover mapping using sentinel 2 bands," Remote Sens Appl, vol. 19, Aug. 2020, doi: 10.1016/j.rsase.2020.100351. [ DOI:10.1016/j.rsase.2020.100351] 17. H. S. Pokhariya, D. P. Singh, and R. Prakash, "Evaluation of different machine learning algorithms for LULC classification in heterogeneous landscape by using remote sensing and GIS techniques," Engineering Research Express, vol. 5, no. 4, p. 045052, Dec. 2023, doi: 10.1088/2631-8695/acfa64. [ DOI:10.1088/2631-8695/acfa64] 18. L. Ghayour et al., "Performance evaluation of sentinel-2 and landsat 8 OLI data for land cover/use classification using a comparison between machine learning algorithms," Remote Sens (Basel), vol. 13, no. 7, Apr. 2021, doi: 10.3390/rs13071349. [ DOI:10.3390/rs13071349] 19. "USGS- Scince for changing world." Available: https://www.usgs.gov/news/news-releases 20. "Landsat Collection 2 Level-2 Science Products." Available: https://www.usgs.gov/landsat-missions/landsat-collection-2-level-2-science-products 21. "Landsat Collection 2 Level-1 Data." Accessed: Dec. 07, 2023. [Online]. Available: https://www.usgs.gov/landsat-missions/landsat-collection-2-level-1-data 22. R. Goldblatt, A. Rivera Ballesteros, and J. Burney, "High Spatial Resolution Visual Band Imagery Outperforms Medium Resolution Spectral Imagery for Ecosystem Assessment in the Semi-Arid Brazilian Sertão," Remote Sens (Basel), vol. 9, no. 12, p. 1336, Dec. 2017, doi: 10.3390/rs9121336. [ DOI:10.3390/rs9121336] 23. F. Seyyed Bagher and R. Yosof, Principles of Remote Sensing. Iran-Isfahan: Azadeh, 2015. 24. S. Abburu and S. B. Golla, "Satellite Image Classification Methods and Techniques: A Review," 2015. [ DOI:10.5120/21088-3779] 25. I. Nurwauziyah, U. D. Sulistyah, I. Gede, B. Putra, M. I. Firdaus, and D. S. Umroh, "Satellite Image Classification using Decision Tree, SVM and k-Nearest Neighbor," 2018. [Online]. Available: https://www.researchgate.net/publication/326316293 26. R. Li and S. Li, "Multimedia Image Data Analysis Based on KNN Algorithm," Comput Intell Neurosci, vol. 2022, 2022, doi: 10.1155/2022/7963603. [ DOI:10.1155/2022/7963603] 27. "Lecture 2: k-nearest neighbors." Accessed: Dec. 10, 2023. [Online]. Available: https://www.cs.cornell.edu/courses/cs4780/2018fa/lectures/lecturenote02_kNN.html#:~:text=The%20k%2DNN%20algorithm&text=Denote%20the%20set%20of%20the,furthest%20point%20in%20Sx). 28. C. Huang, L. S. Davis, and J. R. G. Townshend, "An assessment of support vector machines for land cover classification," Int J Remote Sens, vol. 23, no. 4, pp. 725-749, Feb. 2002, doi: 10.1080/01431160110040323. [ DOI:10.1080/01431160110040323] 29. "Support Vector Machine - an overview | ScienceDirect Topics." Accessed: Dec. 10, 2023. [Online]. Available: https://www.sciencedirect.com/topics/immunology-and-microbiology/support-vector-machine 30. N. Rezaei and P. Jabbari, "Support vector machines in R," Immunoinformatics of Cancers, pp. 143-156, 2022, doi: 10.1016/B978-0-12-822400-7.00013-0. [ DOI:10.1016/B978-0-12-822400-7.00013-0] 31. Esri, "Train Random Trees Classifier (Spatial Analyst)," 2023, Accessed: Dec. 10, 2023. [Online]. Available: https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-analyst/train-random-trees-classifier.htm 32. A. Ghosh, R. Sharma, and P. K. Joshi, "Random forest classification of urban landscape using Landsat archive and ancillary data: Combining seasonal maps with decision level fusion," Applied Geography, vol. 48, pp. 31-41, Mar. 2014, doi: 10.1016/j.apgeog.2014.01.003. [ DOI:10.1016/j.apgeog.2014.01.003] 33. B. R. Shivakumar and S. V. Rajashekararadhya, "Investigation on land cover mapping capability of maximum likelihood classifier: A case study on North Canara, India," in Procedia Computer Science, Elsevier B.V., 2018, pp. 579-586. doi: 10.1016/j.procs.2018.10.434. [ DOI:10.1016/j.procs.2018.10.434] 34. A. Rash, Y. Mustafa, and R. Hamad, "Quantitative assessment of Land use/land cover changes in a developing region using machine learning algorithms: A case study in the Kurdistan Region, Iraq," Heliyon, vol. 9, no. 11, Nov. 2023, doi: 10.1016/j.heliyon.2023.e21253. [ DOI:10.1016/j.heliyon.2023.e21253]
|