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چکیده

 عوارض سطح زمیناز  متنوعهاي نقشه هیو ته ييکشف، شناسا يتوانمند برا يبعنوان ابزار يفیامروزه، استفاده از سنجش از دور فراط

ها ي، تصاوير شهري و سنجش از دور سیارهکشاورز ،ستيز طیمح شيپا ،معدننقشه برداري، در  يگوناگون يکاربردها يآورفن نياست. ا

که گردد.  ها محسوب ميدر آنالیز اين داده يفرآيند جداسازي تصاوير فراطیفي بعنوان يکي از مهمترين مراحل پردازشدر اين بین،  دارد.

هاي جداسازي بر پايه اي از انواع  اين روشدامنه گستردهدر سالیان اخیر، د. ط خطي و غیرخطي پايه ريزي مي گردبراساس دو مدل اختلا

مدل اختلاط خطي بنا نهاده شده، که براساس آن بخش اصلي فرآيند يعني تشخیص اعضاي انتهايي و مقادير فراواني مربوط به آنها تعیین 

هاي تواند جزء مهمي در بسیاري موقعیتگردد. با اين حال بر کسي پوشیده نیست که در برخي مواقع وجود اثرات اختلاط غیرخطي ميمي

و ناديده گرفتن اين اثرات اجتناب  هاي شهري و... محسوب گرددهاي گیاهي، محیطدنیاي واقعي همچون: اختلاط کانیايي مواد، پوشش

هاي تر تکنیکفرآيند جداسازي و بررسي جزئيدر هاي غیرخطي ها و مدلهدف از اين مقاله، مروري بر روش در نتیجهناپذير است. 

انواع روش هاي جداسازي را مي توان به دو گروه روش هاي مبتني بر فیزيک و روش هاي براساس باشد. در همین راستا، تر ميمحبوب

هاي بر پايه اختلاط هاي دوخطي، چندخطي، مدلتوان به انواع مدلها ميها و مدلتکنیک مهمترينابرداده ها تقسیم نمود که در آنها از 

 .کرد اشارههاي يادگیري منیفولد و توپولوژي هاي عصبي و روشهاي کرنلي، شبکهمسیريابي پرتو، روشهاي بر پايه ذاتي يا داخلي، روش

ها از هاي عصبي در طي اين سالهاي دوخطي و شبکهمدلتوان پي برد که  با يک بررسي جامع بر انواع اين روش ها ميدر اين بین، 

اند.اهمیت و محبوبیت بیشتري در بین پژوهشگران اين حوزه برخوردار بوده

چندخطي، شبکه عصبي، کرنل، توپولوژيجداسازي غیرخطي، دوخطي،  دورسنجي، واژگان کلیدی:

 نويسنده رابط
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مقدمه -1

هاي امروزه، کارآيي و سهولت بکارگیري روش

دورسنجي بويژه در مناطق کوهستاني و صعب العبور باعث 

-شده است، که کاربرد اين تکنولوژي بعنوان يکي از روش

-هاي معمول در اکتشافات توسعه يابد. در اين اثنا، روش

ي ابزاري توانمند براي کشف، هاي سنجش از دور فراطیف

ها و مواد سطح هاي متنوع از پديدهشناسايي و تهیه نقشه

.]6-1[شوندزمین محسوب مي

هاي توجه دادههاي قابلبا اين حال، با وجود توانمندي

ها و يا فراطیفي، بدلیل توان تفکیک مکاني پايین سنجنده

 ، (IFOV)ايبعلت حضور مواد متعدد در میدان ديد لحظه

گیري شده ترکیبي از چند عارضه خواهد بود. طیف اندازه

هاي مختلف و مناسب بمنظور بنابراين، بکارگیري روش

ها که در حالت کلي به نام تفکیک صحیح اينگونه اختلاط

شود ضرورت يا جداسازي طیفي نامیده مي 1آنمیگسینگ

.]7[دارد

را مختلط  يهاکسلیاست که پ يروش يفیط يجداساز

يم هيآنها تجز يخالص و فراوان ياعضا يفیبه مشخصه ط

از  يفیفراط يجداساز نديفرآ رهیزنج ي. در حالت کلکند

و  ،لازم، ب( کاهش ابعاد حاتیتصح انجام بخش الف( سه

 لیتشک يسازو وارون ييانتها ياعضا ييج( بخش شناسا

( نشان داده 1بطور جامع در شکل ) اين مراحل .شوديم

.]8[نداشده

]8[مراحل اجراي جداسازي فراطیفي -1شکل 

بنابراين با توجه به شکل، بخش اصلي فرآيند را مرحله 

دهد که سازي تشکیل ميشناسايي اعضاي انتهايي و وارون

-مي مستلزم بکارگیري يک مدل اختلاط مناسب و سازگار

تر (، مرحله اصلي فرآيند را بصورت جامع2باشد )شکل)

1 Unmixing 

توان با قبل از انجام اين مرحله نیز ميدهد(. نشان مي

هاي مناسب شناسايي ابعاد ذاتي تعداد استفاده از الگوريتم

اعضاي انتهايي را از قبل بطور تقريبي تخمین زد. علاوه بر 

اين، بسته به اينکه اعضاي انتهايي از قبل شناخته شده 

باشند و يا به عبارتي دانش قبلي از اعضا و منطقه وجود 

باشد، فرآيند جداسازي به دو بخش نظارتي و  داشته

غیرنظارتي )که در آن استخراج اعضاي انتهايي و تخمین 

.]9[گرددگیرد( تقسیم ميفراواني همزمان صورت مي

ازيمراحل انجام بخش جداس -2شکل 

در نظرگرفته  يفیمعمولاً دو نوع مدل اختلاط ط

بازتاب  يکه پرتوها شوديفرض م ي. در مدل خطشوديم

کنش و اندرکنش  کسل،یپ کيحاضر در  يهادهيشده از پد

ماده  کيتنها با  ياند و اشعه بازتاببا هم نداشته میمستق

به سنجنده  دهیرس يانرژ ،حالت نيا در ،تداخل دارد

خاص است.  دهياز هر پد يبازتاب يهايانرژ يخط بیترک

به سنجنده حاصل  دهیرس يپرتوها يخطریدر مدل غ

-يمواد م نیچندگانه ب يهاچندگانه و تداخل يهاببازتا

.]8[تر استدهیچیحاصل پ يبازتاب لمد يد و بطورکلنباش

افتد که میزان مدل اختلاط خطي زماني اتفاق مي

اختلاط کم و از نوع ماکروسکوپي است. در مدل اختلاط 

خطي، طیف انعکاسي سطح بعنوان يک ترکیب خطي از 

هاي در ارتباط با اجزاء خالص تعداد محدودي از طیف

شوند تصوير تحت عنوان اعضاي انتهايي در نظر گرفته مي

که با يکسري ضرايب )کسرهايي از فراواني اجزاي موجود 

گردند. با انتخاب ايده آل و مناسب دار ميدر منطقه( وزن

بايستي دو محدوديت غیرمنفي اعضاي انتهايي، همواره مي

د ضرايب نیز رعايت گردد. با توجه بودن و مجموع برابر واح

(، که حالتي از يک مدل اختلاط خطي را 3به شکل )

دهد، راديانس اندازه گیري شده بصورت شماتیک نشان مي

در يک پیکسل، متوسط وزن داده شده از مواد موجود در 

.]8[پیکسل مي باشد
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]8[مدل اختلاط خطي -3شکل 

بصورت ترکیب توان بنابراين مدل اختلاط خطي را مي

هاي دار با ضرايب، همراه با اعمال محدوديتخطي وزن

اشاره شده و وجود نويز گوسي بصورت زير نوشت:

(1)

𝑦p = ∑ ar,pmr + np

R

r=1
 

 {

ar,p ≥ 0    ∀p, ∀r

∑ ar,p = 1     ∀p
R

r=1

𝑦𝑝که در آن  ∈ 𝑅𝐿 طیف اندازه گیري شده در ،L 

، 𝑚𝑟تعداد اعضاي انتهايي حاضر در تصوير،  Rباند طیفي، 

امین r، فراواني 𝑎r,pامین عضو انتهايي، rامضاهاي طیفي 

میزان نويز گوسي موجود در  𝑛𝑝و  pماده در پیکسل 

.]8[تصوير در نظر گرفته مي شود

حال در صورتي که میزان اختلاط زياد و يا در مواقعي 

، امکان دارد اين که اختلاط داخلي ماده حائزاهمیت است

ها معتبر نباشند لذا لزوم استفاده از يک مدل مدل

کند. در اشکال زير حالاتي از غیرخطي ضرورت پیدا مي

-ه ايجاد اختلاط از نوع غیرخطي مياختلاط که منجر ب

.]8[شود، نشان داده شده است

]8[حالاتي از اختلاط غیرخطي -4شکل 

هاي گروه روش هاي خطي در دوبطورکلي، بیشتر روش

-گیرند. روشهاي مبتني بر آمار قرار ميهندسي و روش

هاي بر پايه حضور هاي هندسي نیز به دو زيرگروه روش

هاي مبتني بر حداقل حجم سادک پیکسل خالص و روش

هاي مبتني بر ، روشدرواقعشوند. ايجاد شده تفکیک مي

هاي مبتني بر حداقل حضور پیکسل خالص نیز جزء روش

شوند با اين تفاوت که در آنها م سادک محسوب ميحج

بايد فرض حضور حداقل يک پیکسل در هر عضو انتهايي 

.]8[رعايت شود

هاي مبتني بر حضور پیکسل خالص از مهمترين روش

 (PPI)توان به الگوريتم شاخص خلوص پیکسليمي

، الگوريتم آنالیز ]12[  N-FINDR، الگوريتم]11,10[

هاي ، الگوريتم آنالیز مؤلفه]13[  (IEA)خطاي تکرارشونده

، الگوريتم در حال رشد سادک ]14[ (VCA) رأسي

(SGA) ]15[ الگوريتم مخروط محدب حداکثر زاويه ،

، الگوريتم حداکثرسازي حجم ]16[ (SMACC)متوالي 

، الگوريتم حداکثرسازي حجم ]17[ (AVMAX)متناوب 

 ، الگوريتم چارچوب محدب]17[ (SVMAX)متوالي

هاي وابسته به شبکه و مدل حافظه ]18[مشارکتي 

(LAM) ]19-21[ هاي مبتني بررا اشاره کرد و از روش

 SISALهاي توان الگوريتمحداقل حجم سادک نیز مي

، و نوع ]24[ MVES، الگوريتم ]23[ MVSA، و ]22[

 MVC-NMF، الگوريتم]RMVES ]25تعمیم يافته آن 

و  ]27[ (ICE)تکرارشونده ، الگوريتم اعضاي انتهايي]26[

و الگوريتم آنالیز  ]28[ (SPICE)حالت تعمیم يافته آن 

را نام برد. ]29[ (CCA)مخروط محدب 

هاي هاي طیفي بالاست، روشزمانیکه حجم اختلاط

هندسي نتايج ضعیفي را بعلت عدم بردار طیفي کافي در 

هاي آماري وجوه سادک به همراه دارند. بنابراين روش

ين قوي و مناسبي هستند، که معمولًا پیچیدگي جايگز

هاي هندسي دارند. محاسباتي بالاتري در مقايسه با روش

ها، يک مسئله جداسازي فراطیفي بعنوان تحت اين روش

شود. آنالیز سازي مييک مسئله استنتاج آماري مدل

ها ترين اين روشاز ابتدايي (ICA)هاي مستقلمؤلفه

هاي اخیر حالات تعمیم در سالد، که نگردمحسوب مي

. از نوع ]36-30[اي از آنها نیز معرفي شده استيافته

و  DECAتوان به الگوريتم هاي آماري ميتر روشپیشرفته

 DECAبعنوان تعمیمي از الگوريتم  DECAGibbsروش 

.]40-37[نیز اشاره نمود

هاي خطي نیازمند بنابراين همواره استفاده از مدل

فرض اساسي است:برقراري دو 

 ( فرآيند اختلاط بايد در مقیاس ماکروسکوپي رخ دهد.1 

( پرتو نور رسیده به ناظر ناشي از تداخل تنها يک 2 

ماده باشد.
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در صورتي که يکي از اين دو فرض فوق برقرار نباشد 

امکان دارد حالات خطي معتبر نباشند و يکسري اثرات 

.]41[آيدغیرخطي بر روي پرتو نور خروجي بوجود 

، توسط موستراد و سان 1999در تحقیقي که در سال 

اند که، خطاي شین صورت گرفته، به اين نتیجه رسیده

تخمین کسرهاي فراواني براي يک مجموعه کاني امکان 

درصد برسد، در صورتیکه به جاي يک سیستم  30دارد به 

.]42,41[غیرخطي از مدل خطي استفاده شود

هاي ها و روشي از تکنیکهاي متنوعتقسیم بندي

جداسازي غیرخطي تا به امروز ارائه شده است. يک 

(، نشان 5ها در شکل )چارچوب مناسب از اين الگوريتم

ها به دو داده شده است. طبق شکل، در حالت کلي روش

ها که هاي مبتني بر ابردادهمبتني بر فیزيک و تکنیک گروه

شوند. تقسیم ميدر آن نیازي به فرضیات فیزيکي نیست، 

.گردندمعرفي مي به تفکیک هاي بعديکه در بخش

فلوچارت انواع روش هاي مختلف جداسازي -5شکل 

های مبتنی بر ماهیت فیزیکیروش -2

)گروه اول(

های دوخطیانواع مدل -2-1

هاي سازي بازتابغیرخطي در مدلترين مدل ساده

چندگانه، استفاده از تنها يک بازتاب ثانويه يا تعامل 

(، نشان داده 6دوخطي است، که بطور شماتیک در شکل )

شده است. بعبارت ديگر علاوه بر بازتاب اصلي، يک بازتاب 

ثانويه از تابع هدف يا شي موردنظر وجود دارد. در اين 

تداخل و  𝑒1 و 𝑒2و انتهايي حالت، با فرض حضور دو عض

تعامل دوعضو انتهايي از ضرب هادامارد )ضرب درآيه به 

:]43,41[ها( به فرم زير قابل تعريف استدرآيه در ماتريس

(2) 𝑋 = 𝑒1 ⊙ 𝑒2        ↔       ∀𝑛 ∈ {1, … , 𝑑}  ,
𝑥𝑛 = 𝑒1𝑛 . 𝑒2𝑛 

]43,41[نمايي از يک مدل دوخطي بصورت شماتیک -6شکل 

توان مدل را بصورت يک تک مي در اين حالت،

سازي اختلاط خطي( و يک پراکندگي )مشابه مدل

هاي لازم بازنويسي همراه با محدوديت پراکندگي چندگانه

:]43,41[نمود

(3)
𝑋 = 𝑎1𝑒1 + 𝑎2𝑒2 + 𝑎12𝑒1 ⊙ 𝑒2 

 {
𝑎1 ≥ 0  𝑎2 ≥ 0  𝑎12 ≥ 0

𝑎1 + 𝑎2 + 𝑎12 = 1
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ا بدلیل ضرب تداخلات و مراتب بالاتر از دو عضوانتهايي 

تواند مقدار ناچیز و ارزش کمتري بیش از سه بازتاب مي

نسبت به تک بازتاب اصلي داشته باشد. لذا در اين نوع 

هاي غیرخطي، مراتب بالاتر در نظر گرفته نشدند، ولي مدل

هاي اخیر، بدلیل اهمیت مراتب بالاتر خصوصاً در در سال

چندخطي هاي کارهاي معدني و تداخلات کانیايي، روش

هاي دوخطي در بحث اند. از کاربردهاي مؤثر مدلارائه شده

تفکیک پوشش گیاهي، تعیین تعاملات موجود بین خاک و 

-گیاه و تأثیر خاک بر روي طیف گیاه است، بطوريکه مي

برد که ارتباط بین شدت باند طیفي ورودي و توان پي

بسته فراواني اعضاي انتهايي گیاه، رفتاري خطي ندارند و وا

( و استفاده از 3به نوع خاک هستند. با گسترش رابطه )

هاي دوخطي معرفي پارامترهاي مختلف و اضافي انواع مدل

 .]46-44[شدند

، توسط ناسیمنتو و 2009اولین مدل دوخطي در سال 

براي يک سناريوي غیرخطي تشکیل شده از يک لايه  1دياز

در آن از منفرد گیاه بر روي خاک در نظر گرفته شد، که 

هاي يک روش نیمه نظارتي جداسازي بمنظور ارزيابي داده

سازي شده استفاده گرديد. در اين حالت، در واقعي و شبیه

، مدل j و iصورت تداخل بین دوعضو انتهايي مختلف 

:]48,47[بصورت زير قابل بیان است  (NM)ناسیمنتو

(4)𝑋 = ∑ 𝑎𝑟𝑒𝑟

𝑅

𝑟=1

+ ∑ ∑ 𝛽𝑖.𝑗𝑒𝑖 ⊙ 𝑒𝑗

𝑅

𝑗=𝑖+1

𝑅−1

𝑖=1

+ 𝑛

، میزان گسترش تداخل بین دو جزء β𝑖,𝑗در رابطه فوق 

هاي زير نیز بر )عضوانتهايي( است. علاوه براين، محدوديت

:]48,47[روي مدل اعمال مي گردد

(5)

𝑎r > 0      𝑟 = 1.2. … 𝑛 

𝛽𝑖,𝑗 > 0         {
𝑖 = 1.2. … . 𝑅 − 1

𝑗 = 𝑖. … . 𝑅 + 1

∑ 𝑎𝑟

𝑅

𝑟=1

+ ∑ ∑ 𝛽𝑖.𝑗

𝑅

𝑗=𝑖+1

𝑅−1

𝑖=1

= 1

نظرگرفتن بخش  عدم درنقطه ضعف مدل ناسیمنتو 

غیرخطي مدل بعنوان بعد سوم و حل کل مدل بصورت 

و  2خطي بود. به همین جهت، در اواخر همان سال، فان

همکاران پارامتر غیرخطي را بصورت حاصلضرب نسبت 

1 Nascimento & Dias 

2 Fan 

فراواني دو عضوانتهايي مورداختلاط و با فرض غیرخطي 

 .]49[بودن در نظر گرفتند

کسرهاي فراواني  𝐹𝑆و  𝐹jين حالت، در صورتي که در ا

هاي طیفي بازتاب 𝜌𝑗(𝜆𝑖) ،𝜌𝑆(𝜆𝑖)و  j  ،Sاعضاي انتهايي 

 𝐹𝑗𝜌𝑗(𝜆𝑖)𝐹𝑆𝜌𝑆(𝜆𝑖)باشند. فاکتور  j  ،Sاعضاي انتهايي 

به  jنشان دهنده کسرنوري است که بعد از بازتاب از سطح 

بنابراين مدل رسد. برخورد و سپس به ناظر مي Sسطح 

:]49[توان بصورت زير بیان نمودفان را مي

(6)

𝜌(𝜆𝑖) = ∑ 𝐹𝑗𝜌𝑗(𝜆𝑖)

𝑚

𝑗=1

+ ∑ 𝐹𝑗𝐹𝑆𝜌𝑗(𝜆𝑖)𝜌𝑆(𝜆𝑖)

𝑚

𝑗,𝑆=1
𝑗<𝑆

+ 𝜀(𝜆𝑖)

پذيري مدل مذکور، در سال بمنظور کنترل و انعطاف

و همکاران مدل فان را تعمیم داده و در  3،  حلیمي2011

ي آن هاي حل مدل و مقايسهچندين مقاله ديگر نیز روش

هاي ديگر را معرفي نمودند. طبق تعبیر فیزيکي با مدل

-، احتمال تعامل و تداخل دوعضو انتهايي ميفانمدل 

بايستي متناسب با حاصلضرب فراواني آن دو عضو باشد. در 

با اضافه کردن پارامتري فان دل اين مدل پیشنهادي، م

مجهول و اضافي در هر تراکنش محدود شد. در اين حالت، 

براي دوعضو انتهايي را  (GBM)مدل دوخطي تعمیم يافته

توان بصورت زير بیان کرد. که در آن علاوه بر مي

هاي قبلي، محدوده پارامتر مذکور را نیز بايد در محدوديت

.]52-50[نظر گرفت

(7)
𝑌p = ∑ 𝑎𝑟𝑚𝑟 + ∑ ∑ 𝛾𝑖.𝑗𝑎𝑖𝑎𝑗𝑚𝑖⨀𝑚𝑗 + 𝑛

𝑅

𝑗=𝑖+1

𝑅−1

𝑖=1

R

𝑟=1

0 ≤ 𝛾𝑖.𝑗 ≤ 1 , ∀ 𝑖 ∈ {1, … , 𝑅 − 1} , ∀ 𝑗

∈ {𝑖 + 1, … , 𝑅}

γi.jبا توجه به مدل، در صورتي که،      = باشد، مدل به  0

يابد، يعني هیچ تداخلي بین يک مدل خطي کاهش مي

γi.jدوعضو انتهايي وجود ندارد و اگر  = ، آنگاه مدل 1

اي از (، نمونه7شود. در شکل)مي تبديل به مدل فان

سادک حاوي سه عضوانتهايي براي دو مدل دوخطي 

بصورت   (LMM)و مدل خطي  (GBM)تعمیم يافته

.]52,51[شماتیک نشان داده شده است

3 Halimi 
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سادک ايجاد شده با سه عضوانتهايي براي دو مدل خطي و  -7شکل

 ]52,51[دوخطي

هاي مجهول مدل نیز از روشدر تخمین پارامترهاي 

هاي مختلفي استفاده شده است. يکي از الگوريتم

مورداستفاده، الگوريتم بیزين سلسله مراتبي است. اين 

θروش در واقع از تخمین توزيع پسین مقادير  =

(𝑎𝑇, 𝛾𝑇, 𝜎2)
𝑇
گردد. حل و ، محاسبه ميf(θ|y)بصورت   

یدگي تخمین پارامترهاي توزيع پسین ايجادشده بعلت پیچ

-گرهاي معمول همچون تخمینرابطه با استفاده از تخمین

و يا حداکثر  (MMSE) گر حداقل میانگین مربعات خطا

امکان پذير نیست. در نتیجه از  (MAP) گر پسینتخمین

 سازي مونت کارلوي زنجیره مارکوفيهاي شبیهروش

(MCMC) هايي در ارتباط با توزيع براي تولید نمونه

هاي بردار گیبس(. روش)روش نمونه ه شدمذکور استفاد

MCMC  نیز پیچیدگي و بار محاسباتي زيادي را به همراه

هاي داشتند و با هدف کاهش اين پیچیدگي، با روش

هاي گراديان و...( جايگزين سازي مختلف )روشبهینه

 .]52,51[شدند

، عدم در نظرگرفتن تداخلات GBMاز معايب مدل 

يکسان است. اين نقص شايد بر روي موجود بین دو ماده 

سطوح صاف و هموار زياد تأثیرگذار نباشد، ولي در مواردي 

تواند اثرات که با سطوح خشن مواجه هستیم مي

در  MGBMچشمگیري داشته باشد. در نتیجه الگوريتم 

، اين مشکل را رفع کرد که در آن اثرات 2016سال 

 .]53[خودتداخلي بین دو ماده يکسان لحاظ شد

هاي مورداستفاده براي هاي اخیر اکثر الگوريتمدر سال

سنتي، بار محاسباتي بالا، حساسیت به  GBMحل مدل 

نقطه آغازين و کارآيي پايیني در مواجهه با تصاوير فراطیفي 

و همکاران  1با ابعاد بالا را داشتند. به همین جهت، چانگ لي

ف تحت ، از الگوريتم گراديان بهینه نسترو2016در سال 

هاي مرزي استفاده کردند. الگوريتم مذکور تحت محدوديت

هاي مصنوعي و واقعي ارزيابي بر روي داده، BPOGMعنوان 

                                                           
1 Chang Li 

-شد، که نشان از بهبود و کارايي اين روش نسبت به روش

هاي ديگر داشت. همچنین به تازگي الگوريتم مذکور بر 

گرديد، که هاي هايپريون خوي در ايران نیز تست روي داده

-نشان از بهبود و افزايش صحت اين روش نسبت به روش

 .]55,54[ هاي خطي و مرسوم را دارد

-مدل دوخطي مذکور با وجود اينکه يکي از محبوب

هاي جداسازي فراطیفي غیرخطي تصاوير براي ترين مدل

شود، ولي عملکرد مراتب دوم پراکندگي در نظر گرفته مي

ي و تخمین موجود بعلت هاي جداسازآن براساس روش

عدم در نظر گرفتن همبستگي فضايي تصاوير چندان 

رضايت بخش نیست. همچنین، کارآيي مناسبي در مواجهه 

با نويز ناشي از تنکي و پراکندگي همچون: نويز ناشي از 

هاي مرده و خطاي ناشي از راه راه شدگي از ضربه، پیکسل

سي را در نظر دهد، و تنها نويز سفید و گوخود نشان نمي

، مدلي تحت 2018گیرد به همین جهت، در سال مي

معرفي گرديد، که قادر است  (RGBM)قوي  GBMعنوان 

بطورهمزمان علاوه بر نويز گوسي، نويز ناشي از تنکي و 

 .]56[پراکندگي را نیز محاسبه کند

هاي هاي دوخطي، الگوريتمنوع ديگري از انواع مدل

PPNMM هاي انعطاف پذيري از مدل باشند، که تعمیممي

خطي استاندارد هستند و اولین بار از آنها براي حل مسائل 

 .]58,57[استفاده شد (BSS)تفکیک کور منابع 

ها دارند توانايي مدل مزيت مهمي که اين الگوريتم

ها اولین بار کردن دقیق مسائل غیرخطي است. اين الگوريتم

و همکاران بصورت نظارتي و  2، توسط آلتمن2012در سال 

بمنظور جداسازي غیرخطي تصاوير فراطیفي معرفي شدند. 

𝑦طیف  Lدر حالت کلي، اين مدل براي  = [𝑦1, … , 𝑦𝐿]𝑇 ،

از  gاز يک پیکسل مخلوط بعنوان يک تبديل غیرخطي 

 :]59[اختلاط خطي به همراه نويز گوسي برابر است با

(8)  𝑦𝑝 = 𝑔 (∑ 𝑎𝑟𝑚𝑟

𝑅

𝑟=1

) + 𝑛 = 𝑔(𝑀𝑎) + 𝑛 

يک تابع غیرخطي است که انتخاب  gدر اين مدل، 

-باشد. توابع غیرخطي چندجملهمناسب آن حائز اهمیت مي

-اي، سیگموئید و يا ترکیبي از هر دو، مشخصات و ويژگي

اند به هاي جالبي را در مبحث تفکیک منابع بهمراه داشته

همین جهت، در الگوريتم حاضر نیز، از تابع غیرخطي 

 :]59[اي مرتبه دوم بفرم زير استفاده شدچندجمله

                                                           
2 Altmann 

6



  
ي

لم
 ع

يه
شر

ن
 

ره 
دو

ي، 
دار

 بر
شه

 نق
ون

 فن
م و

لو
ع

هم
د

ره 
ما

 ش
،

1 ،
ور

ري
شه

 
اه 

م
13

99
 - 

ه 
قال

م
ي

هش
ژو

پ
  

 

 

س
ا

 

 (9)  𝑔b: [0,1]L → RL 
𝑋 → [𝑋1 + 𝑏𝑋1

2, … , 𝑋𝐿 + 𝑏𝑋𝐿
2]𝑇 

، مدل به مدل خطي کلاسیک کاهش b=0در حالت 

هاي ديگر، خاصیت کند. اين مدل نسبت به مدلپیدا مي

کند و در خودتداخلي )بین دوماده يکسان( را محاسبه مي

وجود ندارد.  bآن هیچ محدوديتي روي مقادير ممکن 

-چندين روش نیز بمنظور حل مدل ارائه شده است که مي

 .]59[توان از مهمترين آنها الگوريتم بیزين را نام برد

 bبخش غیرخطي اين مدل همواره با يک پارامتر واقعي 

-شود در نتیجه ميبعنوان پارامتر غیرخطي بودن کنترل مي

وان میزان غیرخطي بودن را براساس تخمین پارامتر موجود ت

هاي آماري تعیین نمود. در اين حالت با استفاده از آزمون

تواند براي تصمیم گیري درمورد يک حدآستانه دلخواه مي

اينکه آيا پیکسل مشاهده شده با مدل خطي سازگاري 

 .]60[بهتري دارد يا با مدل غیرخطي، استفاده شود

-هاي استخراج اعضاي انتهايي بر روي مدلروشاکثر 

هاي هندسي هاي خطي تکیه دارند. با اين حال، روش

توانند براي حالات غیرخطي در استخراج تا حدودي مي

ها نیز از کمبود عدم وجود نظر گرفته شوند. ولي اين روش

برند. به همین منظور، پیکسل خالص در تصوير رنج مي

ين غیرنظارتي بر روي مدل هاي الگوريتم جداسازي بیز

توسط آلتمن و  2014در سال  PPNMMدوخطي 

روش پیشنهادي بطورهمزمان اعضاي  .همکاران ارائه شد

زند و نیازي به انتهايي و کسرهاي فراواني را تخمین مي

حضور پیکسل خالص در تصوير مشاهده شده ندارد. در اين 

برآورد شوند،  حالت، بعلت تعداد زياد پارامترهايي که بايد

به  (CHMC)يک الگوريتم مونت کارلوي همیلتون مقید

جاي الگوريتم نمونه بردار گیبس براي برآورد و انتخاب 

 .]61[ها معرفي شدنمونه

يک استراتژي جديد ديگري بمنظور تخمین همزمان 

هاي مرتبط با آنها با استفاده از اعضاي انتهايي و فراواني

 (BiPSO)دحام ذرات دومتغیره هاي بهینه سازي ازتکنیک

براساس مدل فان ارائه گرديد. در اين حالت، با استفاده از 

سازي چندمتغیره نیازي به اعمال هاي بهینهروش

تر به جهت بکارگیري از فاکتورهاي هاي پیچیدهمحدوديت

جريمه نیست. الگوريتم مذکور نیازي به حضور پیکسل 

گوريتم مقادير اعضاي خالص ندارد و طبق فرآيند اجراي ال

انتهايي و کسرهاي فراواني با توجه به يکديگر در هر لحظه 

 .]62[شوندبروزرساني مي

و همکاران از طريق مشخصات هندسي  1اخیراً، يانگ

هاي خطي و بمنظور کاهش پیچیدگي انواع مدل

محاسباتي و تقلیل تأثیر اعضاي انتهايي مجازي در بحث 

غیرخطي غیرنظارتي را ، يک روش جداسازي 2هم خطي

معرفي نمودند. در اين روش يک رأس غیرخطي منحصر 

گردد. در به فرد جايگزين همه اعضاي انتهايي مجازي مي

اين حالت، اعضاي انتهايي بطورمستقیم با اعضاي اختلاط 

گردند و سپس تخمیني از شان تصوير ميخطي تقريبي

 .]65-63[گرددکسرهاي فراواني اعضا برآورد مي

، يک مدل اختلاط نرمال دوخطي 2018در سال 

(BNMM)  با توجه به مدلPPNMM  جهت کاهش

اثرغیرخطي و استفاده از يک مدل توزيع نرمال بمنظور 

کاهش تغییرپذيري اعضاي انتهايي ارائه شد. براساس اين 

مدل، نويسنده يک الگوريتم مونت کارلوي همیلتون را 

داد، که نتايج تجربي براي انجام فرآيند جداسازي توسعه 

هاي مصنوعي و تصاوير معیار نشان از عملکرد بر روي داده

-مناسب خروجي الگوريتم پیشنهادي نسبت به الگوريتم

هاي جداسازي کلاسیک داشت. همچنین برخلاف ساير 

ها، در اين روش تأثیر غیرخطي بودن و تغییرپذيري روش

 .]66[بطورهمزمان در نظرگرفته شد

هاي قبلي دوخطي ديگر که نسبت به مدلهاي از مدل

از اهمیت کمتر و موردتوجه پژوهشگران اين حوزه واقع 

 3هاي چنتوان به مدلنشد و صرفاً جنبه موردي داشت مي

و بعنوان  2006اشاره نمود. مدل چن در سال  4و مگانم

يک مطالعه موردي براي توصیف اثرات غیرخطي بین 

درخت، خاک، گیاه و سايه معرفي شد. در اين مطالعه 

عملکرد خطي و غیرخطي بودن آنالیز جداسازي با استفاده 

هاي منحصر به فرد تهیه شده از طريق از يکسري داده

قطه روي زمین ثابت شده سکوي بالني شکل که در يک ن

بود، بررسي گرديد و مدل اختلاط غیرخطي براي چهار 

( ρs، اثرسايه ρg، گیاه ρb، خاک ρtعضوانتهايي )درخت

تعريف شد. نکته حائزاهمیت اينکه بدلیل ساختار موجود 

بین اعضاي انتهايي، در اين مدل تنها تداخل بین درخت با 

ساير تداخلات  خود و سايراعضا مؤثر تشخیص داده شد و

 .]67[اندبعلت شدت کم ناديده گرفته شده

                                                           
1 Yang 

2 Collinearity  
3 Chen    

4 Meganem   
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ايده طراحي مدل مگانم نیز بر پايه وجود اثر سايه در 

ريزي شده است. بطوريکه در اين ساختارهاي سه بعدي پايه

حالت، برخلاف سطوح صاف و يکنواخت، ساخت مدلي 

غیرخطي امري لازم و اجتناب ناپذير است. اين مدل اختلاط 

توسط مگانم و همکاران ارائه گرديد و با  2014 در سال

محیط هاي شهري سازگاري بیشتري دارد. اساس اين مدل 

اختلاط، با معادلات فیزيکي بر پايه تئوري انتقال تابش 

شود و در واقع از طريق معادلات اين تئوري، شروع مي

گردند که سازي ميهاي شهري شبیههايي براي محیطمدل

نظیر میزان تابش خورشید، اثرات پراکندگي در آن عواملي 

هاي اتمسفر، تابش ساطع شده بوسیله همسايگي و بازتاب

 .]68[شوندچندگانه در نظرگرفته مي

هاي دوخطي اشاره شده با وجود تفسیرهاي مدل

توانند داراي نقاط ضعف و فیزيکي مناسب و روشن، مي

اصطلاح  هايي نیز باشند. همواره به خاطر اينکه يککاستي

دوخطي شامل ضرب حداقل دوعضو انتهايي با مقادير 

کمتر از يک است، اين امکان وجود دارد که اين اندازه 

کوچکتر از مقدار عضوانتهايي واقعي باشد. اين نقص در 

هايي که اين تعاملات دوجانبه با ضرايب و پارامترهاي مدل

شود. همانند کوچکتر از يک همراه هستند، تشديد مي

 .]41[در نظرگرفته شدGBM رامترهايي که در مدلپا

 GBMعلاوه بر اين، در چندين مدل دوخطي همچون 

تعداد زيادي پارامتر آزاد معرفي شده است که در حالت 

تواند تعداد اعضاي عضوانتهايي، مي Mبراي  M2مرتبه دوم 

اي افزايش يابد و ممکن است مدل غیرخطي بطور فزاينده

سوق پیدا کند. البته براي حل  1بسمت يک بیش برازش

-اين مشکل و کاهش تعداد اعضاي انتهايي غیرخطي مي

توان از يک ارتباط فضايي بین اعضا استفاده کرد و در آن 

تنها اعضاي انتهايي در همسايگي براي ضرب و عامل 

توان از يک تداخل در نظر گرفته شوند. در اين حالت، مي

پیدا کردن اعضاي بمنظور  EVLMM الگوريتم جستجوي

 .]69,41[انتهايي واقعي استفاده نمود

 های چندخطیانواع مدل -2-2

هاي دوخطي معرفي شده براي تداخل بین مدل

اند ولي بصورت تئوري اين دوعضو انتهايي قابل استفاده

توانند براي تداخل بیش از دوعضو با معرفي ها ميمدل

                                                           
1 Overfitting  

استفاده از خطي و يا مراتب بالاتر و يا هاي سهمدل

به کار  PPNMMهاي درجه بالاتر در مدل ايچندجمله

گرفته شوند. چنین مراتب بالاتري ممکن است باعث ايجاد 

سهم آنها  ود کوچکتر از يک و ناچیز باشمقادير سیگنال 

-درکل سیگنال طیفي قابل ملاحظه نباشد، چون سیگنال

هاي طیفي حاصلضرب چندين بازتاب و مقادير فراواني 

ن هستند. علاوه برآن، حل مسائلي با چنین درجات شا

بالايي همیشه دشوار و مشکل بوده است. ولي در مقابل، در 

مواردي همچون کارهاي معدني چنین تداخلات چندگانه 

و قابل  ،توانند نقش اساسي را در سیگنال طیفي بازيمي

 .]70[اغماض نباشند

نکته حائز اهمیت ديگر، در مورد تصاوير فراطیفي 

دورسنجي، محدوده بردارهاي طیفي آنهاست که مي 

قرار بگیرند و اين محدوديت بايد  𝑑[1 0]بايستي در بازه 

هاي اختلاط لحاظ شوند که در مراتب بالاتر، شرط در مدل

مذکور برقرار نیست. بعنوان مثال، در صورتي که يک مدل 

PPNMM رامتر با پاb=1 و بدون وجود نويز يا حالتي از ،

مدل فان در نظر گرفته شود، همواره براي مراتب بالاتر 

 :]70[توان نوشتمي

(10) 

𝑥

= ∑ 𝑎𝑖𝑒𝑖

𝑝

𝑖=1

+ ∑ ∑ 𝑎𝑖𝑎𝑗𝑒𝑖⨀𝑒𝑗

𝑝

𝑗=1

𝑝

𝑖=1

+ ∑ ∑ ∑ 𝑎𝑖𝑎𝑗𝑎𝑘𝑒𝑖⨀𝑒𝑗⨀𝑒𝑘

𝑝

𝑘=1

𝑝

𝑗=1

𝑝

𝑖=1

+ ⋯ 

𝑦که در صورتیکه  = ∑ 𝑎𝑖𝑒𝑖
𝑃
𝑖=1 

(11)  𝑥 = 𝑦 + (𝑦⨀𝑦) + (𝑦⨀𝑦⨀𝑦) + ⋯ = ∑ 𝑦𝑖

∞

𝑖=1

 

در محدوده  yدر اين حالت، در صورتي که همه اجزاي 

باشد. با در نظرگرفتن تصاعد هندسي بین مقادير  [0,1]

 توان به نتیجه زير رسید:بازتابي مي

(12)  𝑥 =
𝑦(1 − 𝑦𝑛)

1 − 𝑦
=

𝑦

1 − 𝑦
=

∑ 𝑎𝑖𝑒𝑖
𝑝
𝑖=1

1 − ∑ 𝑎𝑖𝑒𝑖
𝑝
𝑖=1

 

برد که پيتوان با کمي دقت در رابطه حاصل مي

گیرند و قرار نمي [0,1]هاي بدست آمده در محدوده بازتاب

هاي دوخطي براي مراتب بالاتر اختلاط نتايج واقعي را مدل

 همین جهت، يک مدل چندخطيکنند. بهمنعکس نمي

MLM هاي قبلي است، معرفي شد. که گسترش يافته مدل
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دهد و مدل مذکور تنها يک پارامتر خاص را مدنظر قرار مي 

آن توصیف احتمال تداخل اضافي براي پرتو نور ورودي 

براي هر پیکسل تخمیني،  MLMاست. علاوه بر آن، مدل 

اين مدل شامل  کند.جز غیرخطي بودن را نیز تعیین مي

همه درجات تداخل اعضاي انتهايي و يک استدلال فیزيکي 

 اساسي را بهمراه دارد و بردارهاي بازتابي تولیدشده بوسیله

اين مدل با در نظر گرفتن فرآيند بازتاب در يک پروسه 

گیرند. در قرار مي [0,1]مارکوفي گسسته در محدوده 

نتیجه رابطه چندخطي با فرض اينکه بعد از هر تداخل با 

داراي تداخلات اضافي  Pيک ماده، پرتو نور با احتمال 

تداخل ديگري صورت نگرفته و  (P-1)است و با احتمال 

قیماً توسط ناظر دريافت مي شود، بصورت زير پرتو مست

 :]70[بیان مي گردد

(13) 

𝑥

= (1 − 𝑃) ∑ 𝑎𝑖𝜔𝑖

𝑃

𝑖=1

+ (1 − 𝑃)𝑃 ∑ ∑ 𝑎𝑖𝑎𝑗𝜔𝑖⨀𝜔𝑗

𝑃

𝑗=1

𝑃

𝑖=1

+ (1 − 𝑃)𝑃2 ∑ ∑ ∑ 𝑎𝑖𝑎𝑗𝑎𝑘𝜔𝑖⨀𝜔𝑗⨀𝜔𝑘 …

𝑃

𝑘=1

𝑃

𝑗=1

𝑃

𝑖=1

 

= (1 − 𝑃)𝑦 + (1 − 𝑃)𝑃𝑦2 + (1 − 𝑃)𝑃2𝑦3 …
= (1 − 𝑃)𝑦
+ 𝑃𝑦⨀[(1 − 𝑃)𝑦
+ (1 − 𝑃)𝑃𝑦2 … ]
= (1 − 𝑃)𝑦 + 𝑃𝑦⨀𝑥 → 𝑥

=
(1 − 𝑃)𝑦

1 − 𝑃𝑦

=
(1 − 𝑃) ∑ 𝑎𝑖𝜔𝑖

𝑃
𝑖=1

1 − 𝑃 ∑ 𝑎𝑖𝜔𝑖
𝑃
𝑖=1

 

Pطبق رابطه، مقادير انعکاسي براي احتمال  < ، در 1

باشد، مدل  P = 0گیرند و در صورتي که قرار مي [0,1]بازه 

 .]70[يابدبه مدل خطي کاهش مي

هاي جداسازي هاي اختلاط غیرخطي و روشاکثر مدل

پراکندگي در هر باند را ي ارائه شده بطورصريح درجه

کنند و بطورکلي اساس غیرخطي بودن يکسان فرض مي

باشد )پیکسل محور(. اين مورد در آنها براساس پیکسل مي

هاي واقعي در تضاد است و اختلاط طیفي ذاتاً با موقعیت

وابسته به طول موج است. بعنوان مثال، میزان تداخل بین 

تواند شدت مي به مراتب NIRگیاه و خاک در قلمرو 

بیشتري نسبت به منطقه مرئي داشته باشد. به همین 

اي از مدل هاي اخیر، مدل تعمیم يافتهجهت، در سال

MLM  معرفي شده است که در آن اين ضعف حل و اساس

 .]71[باشدالگوريتم باندمحور مي

-و همکاران با استفاده از تقريب 1، هیلن2019در سال 

اخلات نوري براساس ترسیم هاي تابش نور و توصیف تد

گراف و بکارگیري فرآيند تصادفي بمنظور محاسبه مسیر 

هاي در نظرگرفته شده براي گراف ترسیمي و تعیین وزن

هاي هر مسیر، مدل گرافیکي جامعي را براي انواع مدل

 محبوب موجود همچون: خطي، دوخطي، چندخطي

(MLM) ن، يک اجرا و دوباره بازنويسي نمودند. علاوه بر آ

است نیز معرفي  MLMمدل جديد که تعمیم يافته مدل 

گرديد که در آن تأثیر اثر سايه در تصوير در نظر گرفته 

 .]72,73[شد

يک مدل چندخطي ديگر، تعمیم يافته مدل دوخطي 

GBM تحت عنوان مدل دوخطي اصلاح شده در سال ،

ارائه شد در اين حالت، ابتدا با استفاده از روش  2018

SID اعضاي انتهايي مشخص و سپس با در نظرگرفتن يک ،

فراواني اعضا  NMFمدل خطي و استفاده از الگوريتم 

تخمین زده شد. در ادامه، میزان پارامتر غیرخطي بودن 

براي مدل پیشنهادي با استفاده از تخمین بیز تعیین 

با توجه به معلومات و  MBMگرديد و مدل پیشنهادي 

 .]74[شدمفروضات موجود طراحي 

هاي چندخطي ديگر، ارائه شده توسط از مدل

خطي مارينوني و همکاران  Pتوان به مدل پژوهشگران مي

هاي اخیر به مرور طراحي و را اشاره نمود، که طي سال

 هیمدل اول 2015در سال نقاط ضعف آن بهبود يافته است. 

P اسیتداخلات در مق يسازمدل ييکه توانا يخط 

ي و با استفاده را داشت طراح يکروسکوپو ما يکروسکوپیم

 ييانتها يو اعضا يرخطیغ بيضرا POD هيروش تجزاز 

مدل تعیین گرديد. روش تجزيه پلي تاپ راه حلي است که 

در آن مسئله غیرخطي، خطي سازي مي گردد. در اين 

هايي از تعداد حالت، يک پلي تاپ محدب بصورت زيربخش

سپس با طراحي ارتباط  گردد ومتناهي نیم فضا تعريف مي

توان بین دو رأس پلي تاپ با استفاده از توابع مثلثاتي، مي

تاپ تعمیم آنرا بصورت معادلات خطي براي بقیه رئوس پلي

Pداد. در اين حالت، مدل پیششنهادي براي  ≥ بصورت  2

 :]76,75[تحلیلي به فرم زير طراحي گرديد

(14) 
𝑦𝑙 = ∑ 𝑎𝑟𝑙𝑚𝑟

𝑅

𝑟=1

+ ∑{∑ ∑ [𝜗𝑖𝑘𝑙𝑚𝑖 + 𝜗𝑗𝑘𝑙𝑚𝑗]
𝑘

𝑅

𝑗=𝑖

𝑅

𝑖=1

𝑃

𝑘=2

+ ∑ [𝜁𝑖𝜈𝑘𝑙𝑚𝑖]
𝜈𝑘

⨀ [𝜁𝑗𝜉𝑘𝑙𝑚𝑗]
𝜉𝑘

𝑘−1

𝜉𝑘=1

} 

                                                           
1 Heylen 
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𝜈𝑘جايیکه،  = 𝑘 − 𝜉𝑘  و𝑚𝑖
𝑘 = [𝑚𝑖𝑛

𝑘 ]𝑛=1,…,𝑁 علاوه ،

اثرات غیرخطي ارائه  𝜁𝑖𝜈𝑘𝑙 ،𝜁𝑖𝜉𝑘𝑙 ،𝜗𝑖𝑘𝑙هاي بر اين، کمیت

مین پیکسل درون Lمین عضوانتهايي به روي iشده براي 

k مین مرتبه تداخل هستند و همواره سه پارامتر فوق

گیرند. در رابطه فوق، با قرار قرار مي 3[0,1]داخل فضاي 

يابد. در مدل به يک مدل دوخطي کاهش مي P=2دادن 

ادامه، با استفاده از تغییر متغیر و ساده سازي، مدل فوق را 

 :]76[توان بصورت زير بیان نمودمي

(15)  𝑦𝑙 = ∑ 𝑎𝑟𝑙𝑚𝑟

𝑅

𝑟=1

+ ∑ ∑ 𝛽𝑟′𝑘𝑙
′ 𝑚𝑟′

𝑘

𝑅

𝑟′=1

𝑃

𝑘=2

 

𝛽𝑟′𝑘𝑙که در آن
′ = 𝜓𝑟′𝑘𝑙

𝑘 . (𝑅 + در ارتباط با تغییر  (1

𝜓𝑟′𝑘𝑙متغیر 
𝑘 هاي فیزيکي زير محدوديت است که در آن

د) براي بررسي بیش تر مي توان بايستي اعمال گردنیز مي

 :]76[به رفرنس مراجعه نمود(

(16) 
𝑎𝑟𝑙 ≥ 0 , 𝛽𝑟𝑘𝑙

′ ≥ 0 
∑ 𝑎𝑟𝑙

𝑟

+ ∑ 𝛽𝑟𝑘𝑙
′

𝑟𝑘

= 1   ,   ∀𝑟𝜖{1. … . 𝑅}, 𝑘𝜖{2. … . 𝑃} 

تواند مراتب غیرخطي را خودش روش مذکور نمي

تخمین بزند، در نتیجه ممکن است باعث عملکرد پايین 

همین منظور، براي فرآيند و پديده بیش برازش گردد. به

ه رفع اين مشکل از يک روش يادگیري براساس شبک

در ابتدا  P، میزان غیرخطي بودن (ANN)عصبي مصنوعي 

 .]77[تخمین و سپس فرايند جداسازي انجام گرفت

مدل فوق شايد در توصیف مراتب غیرخطي خیلي بالا 

همین بعلت افزايش بارمحاسباتي و... دچار مشکل گردد به

نهايت جهت دلیل، يک مدل هارمونیک براساس مراتب بي

معرفي و ترکیبي هارمونیک از توصیف اين مشخصات 

طیف اعضاي انتهايي براي تعیین تداخلات فراخطي 

 :]79,78[بصورت زير تعريف گرديد

(17) 

𝑦𝑙 = ∑ 𝑎𝑛̂

𝑅

𝑟=1

(𝑐𝑜𝑠𝑚𝑟 + 𝑠𝑖𝑛𝑚𝑟)

+ ∑ ∑ 𝛽𝑟𝑘𝑙
̂ (𝑐𝑜𝑠𝑚𝑟

𝑘

𝑅

𝑟=1

𝑃̂

𝑘=2

+ 𝑠𝑖𝑛𝑚𝑟
𝑘) 

P̂)هارمونیک  𝑃̂براي حل اين مدل اختلاط  − HMM) 

نیز، يک روش سینوسي براساس تجزيه پلي تاپ بنام 

SiPOD علاوه براين، يک چارچوب کاربردي از . ارائه شد

هاي هاي مراتب بالاتر پیشنهادي جهت شناسايي کانيمدل

مافیکي بر روي سطح کره مريخ توسط مارينوني و کلاينت 

 .]81-78[معرفي گرديد

 خطي نیزPيک مدل نرمالیزه شده براساس مدل 

، که در آن مقادير فراواني و ضرايب  (NPLA)معرفي گرديد

غیرخطي نرمالسازي شدند. با اين کار میزان بیش برازش 

مدل کاهش يافت. در اين حالت، با انتخاب يک محدوديت 

ها و ضرايب غیرخطي، مسئله تبديل به براي فراواني 2Lنرم 

 .]82[سازي محدب گرديديک مسئله بهینه

توانند مي pHMMو  pLMMهاي اگرچه مدل

بارزسازي صحیحي از تصاوير فراطیفي را به ارمغان آورند 

توانند بطورمستقیم کسرهاي فراواني اعضا را ولي نمي

ارزيابي کنند. علاوه برآن، همانطورکه قبلاً اشاره شد، مدل 

که ترکیب شده مشخصات  (MLM)اختلاط چندخطي 

تر در مراتب بالا GBMو  PPNMMدومدل دوخطي 

تداخل بود، همواره توانايي ارزيابي رخداد احتمالاتي 

تداخلات غیرخطي در میان عناصر تصوير را داشت. در 

همین راستا، مدلي تحت عنوان مدل اختلاط چند 

معرفي شد، که  2018در سال  (MHPNMM)هارمونیکي 

مي باشد و قادر بود  MLMحالتي گسترش يافته از مدل 

و  MLM ،pLMMدل هاي که بطورهمزمان مزاياي م

pHMM 83[را در نظر بگیرد[. 

 های اختلاط ذاتی یا داخلیمدل -2-3

هاي ذاتي يا داخلي، مخلوطي از ذرات بطورکلي اختلاط

ها هستند که در تماس نزديک با يکديگر و اصطلاحاً يا دانه

بندي دارند، ذرات کانیايي موجود در ماسه و حالت بسته

هايي امولسیون ها يا ابرها مثالخاک يا قطرات موجود در 

شوند. مشخصات مطلوب ها محسوب ميطاز اين نوع اختلا

هايي به پارامترهاي زيادي همچون براي چنین اختلاط

تعداد کل ذره و کسري از هر جزء، توزيع اندازه ذرات براي 

ها، ها، فاصله متوسط بین بازتابهر جزء، شکل و جهت دانه

دگي، تابع توزيع انعکاس خصوصیات جذب و پراکن

 .]41[وابسته است (BRDF)دوجهتي هر ماده 

همواره در يک اختلاط داخلي، نور بطورمعمول چندين 

بار با ذرات تشکیل دهنده مخلوط قبل از رسیدن به ناظر 

کند و در هر برخورد با ذره فوتون ممکن است در برخورد مي

کسري از يک جهت تصادفي جذب يا پراکنده شود. بطورکلي، 

هاي ورودي پراکنده شده توسط يک ذره نسبت به کل فوتون

توان هاي تحت تأثیر قرار گرفته بوسیله آن ذره را ميفوتون

10
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نامید. بعلت تداخل   (SSA)اصطلاحاً آلبدوي پراکندگي منفرد 

چندگانه در يک اختلاط ذاتي يک ارتباط پیچیده اي بین 

SSA  ذرات تشکیل دهنده و حجم بازتاب براي اختلاطي که

(، يک 8کند، وجود دارد. شکل )يک ناظر اندازه گیري مي

هاي چندگانه بین ذرات در يک طرح شماتیک براي بازتاب

 .]41[دهدتداخل داخلي را نشان مي

 
ها در طرح شماتیک نشاندهنده انعکاس چندگانه که بین دانه -8شکل 

ها آلبدوي بالايي دارند دهد. سمت چپ، دانهمييک اختلاط رخ 

بنابراين احتمال پراکندگي در هر دانه بالاست. سمت راست، کسر 

دهد بنابراين در هر مسیر و پايیني از آلبدو براي هر دانه را نشان مي

 ]41[برخورد با دانه احتمال جذب وجود دارد

هاي هاي فراواني بمنظور توصیف چنین اختلاطمدل

ذاتي و داخلي خصوصاً در بحث کانیايي تا به امروز معرفي 

هاي هايي، اختلاطشده است، تا جايیکه به چنین اختلاط

ترين و شود. يکي از محبوبکانیايي نیز اطلاق مي

ها، مدل هپکه نام دارد که توسط پرکابردترين اين مدل

 .]84,41[ارائه گرديد 1981بروس هپکه در سال 

هاي س تئوري انعکاس دوجهتي و اصلمدل هپکه براسا

بیان شده توسط کارهاي  (RT)بنیادين در بحث انتقال تابش

توسعه پیدا کرده است. در صورتي که يک طرح 1چاندراسخار

(، نشان 9شماتیک براي يک مدل انتقال تابش در شکل )

نسبت به  𝜃𝑆و 𝜃0داده شده باشد، با توجه به شکل، زواياي 

شوند و زواياي برخورد و پراکندگي نامیده مي، nنرمال زمین 

𝑔در آن  = 𝜃0 − 𝜃𝑆 84[برابر با زاويه فاز است[. 

 
 ]83[طرح شماتیک از يک مدل انتقال تابش -9شکل 

                                                           
1 Chandrasekhar 

بنابراين در اين حالت، انعکاس در يک طول موج داده 

از يک سطح شامل ذرات دلخواه با تقريب  (λ)شده 

 :]84,41[زير بیان کردتوان بصورت نزديک به هم را مي

(18)  𝑥(𝜇𝑠, 𝜇0, 𝑔) =
𝜔

4𝜋

𝜇0

𝜇0 + 𝜇𝑠

{[1 + 𝐵(𝑔)]𝑃(𝑔)

+ 𝐻(𝜔, 𝜇0)𝐻(𝜔, 𝜇𝑠) − 1} 

 (SSA)متوسط آلبدوي پراکندگي منفرد  ωکه در آن 

متوسط تابع فاز ذرات،  P(g)تابع پس انتشار،  B(g)است. 

H(ω, μ0)  وH(ω, μS)  تابع پراکندگي چندگانه يا تابع

μ0چاندراسخار و  = cos (θ0)  وμS = cos (θS)  است. در

دهد که انعکاس اي را ارائه ميواقع مدل هپکه، معادله

دوطرفه از يک ماده با ذرات خیلي نزديک به هم را با 

 .]84,41[دهدپارامترهاي فیزيکي و نوري ارتباط مي

ها و طبق پژوهشي رابطه فوق، براساس يکسري تقريب

جش از دوري که توسط موستراد و پیترز تحت فرضیات سن

سازي گرديد. در اين حالت، رابطه صورت گرفت، ساده

تر و هاي عملي مناسبساده شده هپکه که براي موقعیت

 :]85,84[کارآمدتر است بصورت زير قابل بیان است

(19) 
𝑥(𝜇𝑠, 𝜇0, 𝜔) = 𝑅(𝜔)

=
𝜔

(1 + 2𝜇𝑠√1 − 𝜔)(1 + 2𝜇0√1 − 𝜔)
 

هاي اخیراً چندين مدل پیشنهادي از ترکیب مدل

مدل هپکه بمنظور حل مسائل اختلاط ذاتي و خطي با 

ها، کانیايي معرفي شده است. دلیل بکارگیري اين مدل

امکان وجود هر دو حالت خطي و اختلاط داخلي در يک 

هاي واقعي است. يکي از اين زمینه معین در موقعیت

، توسط ناسیمنتو و دياز ارائه شد 2010ترکیبات در سال 

اي براي جداسازي رحلهکه در آن از يک روش دو م

 .]86[شدهاي داخلي استفاده ميفراطیفي اختلاط

هاي مختلف نیز براي با کرنل K-FCLSيک الگوريتم 

و همکاران  2هاي داخلي توسط برودواترجداسازي اختلاط

، RBFتابع کرنلي خطي، 4ارائه گرديد و يک مقايسه بین 

علاوه هاي پیشنهادي صورت گرفت. اي و کرنلچندجمله

هاي ها با موفقیت بر روي دادهبر آن، اين روش

آزمايشگاهي که در آنها اعضاي انتهايي شناخته شده و 

، بر روي همچنیناثرات اتمسفري غايب هستند، تست شد. 

                                                           
2 Broadwater 
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نیز آزمايش و مورد  1مپهاي فراطیفي واقعي هايداده

بررسي قرار گرفت. در اين حالت، تعداد اعضاي انتهايي و 

تمسفري از قبل مجهول بودند، ولي با اين حال اثرات ا

 .]89-87[الگوريتم نتايج مثبتي را بهمراه داشت

ارتباط بین اختلاط خطي و  2، کلوز2012در سال 

غیرخطي را بررسي نمود و مدلي تحت عنوان مدل 

ارائه کرد. اين مدل يک پیکسل را  MMPچنداختلاطي 

ي و يک بصورت اختلاط ماکروسکوپي از اعضاي انتهاي

اختلاط میکروسکوپي )از تابع توزيع انعکاس دوطرفه( در 

گرفت و قادر بود بطورصحیح فرآيند جداسازي نظر مي

تصاوير فراطیفي تشکیل شده از هر دو نوع اختلاط را 

ها بطورمستقیم و بدون نیاز به دانش قبلي از انواع اختلاط

 .]91,90[تخمین بزند

که در آن نیز مدل MMPهاي اخیر مدلي مشابه در سال

شوند، هاي غیرخطي باهم ترکیب ميهاي خطي و اختلاط

هاي توسط هیلن ارائه شد که نتايج بهتري در مقايسه با مدل

از خود نشان داد )خطاي بازسازي کمتر و  MMPخطي و 

ضرايب فراواني صحیح تر(. روش مذکور برخلاف الگوريتم 

MMP شد، با ر گرفته ميکه براي يک اختلاط کانیايي در نظ

در نظر گرفتن هر طیف پیکسلي بعنوان ترکیب خطي از 

را گسترش دهد و  MMPتوانست مدل هاي ذاتي مياختلاط

به همین جهت، مدل مذکور تحت عنوان اختلاط خطي براي 

 .]92[معرفي گرديد (LIM)اختلاط داخلي 

هاي ديگري نیز در اين سال علاوه بر مدل هپکه تئوري

در  3ايزوگرين مدلتوان به شده اند، که از آنها ميمعرفي 

و تئوري  1999در سال  4میشچنکو ، 1992سال 

ها توانايي اشاره کرد. اين مدل 1999به سال  5شوکراتف

تخمین دقیق و صحیحي از فراواني و اندازه ذره را در مورد 

ها توانند ارائه دهند. در واقع اين روشسطوح پودرشده مي

هاي زمیني بمنظور آزمايشگاهي و تست در کارهاي

استخراج ضرايب فراواني با داشتن اندازه دقیق ذره با 

مؤثر و کارا هستند، ولي بدلیل  %10تا  5صحت بین 

ها و اطلاعات قبلي ساختار بشدت پیچیده و نیاز به داده

 .]96-93[براي انجام، از محبوبیت کمتري برخوردارند

                                                           
1 HyMap 

2 Close 

3 Isograin 
4 Mishchenko 

5 Shkuratov 

رکیب دو مدل هپکه و اخیراً يک روش غیرخطي از ت

شوکراتف براي فرآيند جداسازي استفاده شده که در آن 

-اي انجام ميآنالیز کمي کانیها در يک پروسه سه مرحله

گیرد. با توجه به اينکه از نقاط ضعف مدل هپکه، نیاز اين 

باشد، مي SSAهاي نوري براي تعیین مدل به وجود ثابت

براي گستره وسیعي  هاي نوريفقدان اين ثابت ،در نتیجه

کند. بنابراين را محدود مي SSAها، محاسبات براي از کاني

هاي براساس مدل پیشنهادي در مرحله اول فرآيند، ثابت

نوري با استفاده از مدل شوکراتف محاسبه و سپس در 

مرحله بعدي آلبدوهاي پراکندگي و چندگانه براي هر 

-استخراج ميعضوانتهايي از طريق معادلات چاندراسخار 

گردد و نهايتاً، هر طیف اختلاط با ايجاد يک جدول 

جستجو بین انعکاس و فراواني هر عضوانتهايي براساس 

 .]98,97[شودمدل هپکه ساخته مي

 سازیهای برپایه شبیهروش -2-4

هاي غیرخطي براساس تقسیم بندي از انواع ديگر روش

را  6راديوسیتيتوان معالات رديابي پرتو و ارائه شده مي

عنوان کرد، که بیشتر جنبه آزمايشگاهي داشته و در 

هاي کامپیوتري و تعیین پرتو نور در يک تصوير گرافیک

-سازي مورداستفاده قرار ميمجازي و براي کارهاي شبیه

د. در همین راستا، براي تعیین نور در يک فضاي نگیر

هاي مجازي، يک نقطه آغازين مورداستفاده درگرافیک

کامپیوتري، معادله رندرينگ است. اين معادله، توصیف 

کننده پرتو نور خروجي از يک نقطه در يک جهت مشخص 

باشد. بعنوان مجموع پرتو نور ورودي انعکاسي و منتشره مي

شود. معرفي مي BRDFاي نیز از طريق هاي زاويهوابستگي

کند که توصیف در اين حالت، معادله رندرينگ فرض مي

 :]41[تصوير موجود، و بصورت زير قابل بیان استهندسي 

(20) 

𝐵(𝑋, 𝜔)
= 𝐸(𝑋, 𝜔)

+ ∫ 𝜌(𝑋, 𝜔, 𝜔′)𝐵(𝑋′, 𝜔′)𝐺(𝑋, 𝑋′)𝑑𝐴
𝑆

 

,𝐵(𝑋که در آن،  𝜔)  پرتو نور در طول موجω  از نقطه

X  روي يک سطح در جهتω ،𝐸(𝑋, 𝜔)  پرتو منتشره در

,𝜌(𝑋و براي منابع نوري غیرصفر،  ωجهت  𝜔, 𝜔′) ،  طول

توصیف کننده کل سطوح  X ،Sدر  BRDFموج وابسته به 

                                                           
6 Ray tracing & Radiosity 
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و  Xتا  ′Xبردار از  ′X ،𝜔 ديد در تصوير از نقطه نظرقابل 

 𝐺(𝑋, 𝑋′) 41[فاکتور هندسي بین دو سطح است[. 

توان آنرا با اين معادله به طول موج وابسته است که مي

اضافه کردن فاکتورهايي همچون: انتقال، انتشار، 

در حالي که روش رديابي پرتو  .فلورسانس و ... ارتقاء داد

اغلب نتايج واقعي را بهمراه دارد، اما همیشه نیازمند يک 

باشد و توصیف هندسي با جزئیات مشخص از تصوير مي

توان اين کار نیز مستلزم بار محاسباتي زيادي است، اما مي

زي ساهاي تحلیلي سادههاي عددي و روشآنرا با تکنیک

-نمود. ازاين رو، با استفاده از يکسري فرضیات اضافي مي

هاي ساده بدست آورد، هاي دقیقي از سناريوتوان راه حل

کمک فرضیات که در اين حالت، معادله رندرينگ به

شود، بطوريکه در آن سازي ميپراکندگي لامبرتین ساده

توان فاکتور هندسي را بطورصريح تعیین کرد. نتايج مي

از اين ساده سازي تحت عنوان معادله راديوسیتي  حاصل

 بصورت زير قابل تعريف است:

(21) 
𝐵(𝑋)

= 𝐸(𝑋) + 𝜌(𝑋) ∫ 𝐵(𝑋′)
cos(𝜃𝑋) cos(𝜃𝑋′)

𝜋𝑟2
𝑑𝐴′

𝑆

 

شار نیمه کروي انرژي خروجي  𝐵(𝑋)که در آن، 

 𝜌(𝑋)انرژي منتشره از منابع نوري،  X ،𝐸(𝑋)اطراف 

,𝑋′ ،𝜃𝑋و 𝑋طول بردار بین  X ،rانعکاس در  𝜃𝑋′  زاويه

,𝑋بین بردار  𝑋′ 41[با نرمال سطح است[. 

هايي از بررسي اثرات غیرخطي براي يک تصوير نمونه

سازي شده با استفاده از معادلات مذکور در فراطیفي شبیه

 ارائه شده است. ]104-99[هاي پژوهش

 های کرنلیروش -2-5

آنالیز  ها جهتهاي کرنلي کلاسي از الگوريتمروش

ترين عضو ند، که محبوبوشالگوهاي شناسايي محسوب مي

، در (SVM)توان ماشین بردار پشتیبان اين گروه را مي

ها آنالیز يافتن و مطالعه نظر گرفت. بطورکلي، اين روش

بندي، بندي، رتبهانواع کلي از روابط )همچون: خوشه

ها دادهبندي و...( در هاي اصلي، همبستگي و طبقهمؤلفه

 شوند.محسوب مي

هاي کرنلي برحسب نوع تابع کرنلي که آنها انواع روش

گردند و کند، نامگذاري ميرا قادر به کار در ابعاد بزرگ مي

در يک فضاي مشخص بدون نیاز به محاسبه مختصات 

ها و بوسیله محاسبه ضرب داخلي ساده بین تصاوير داده

ها د، که اين روششوهمه جفت نقاط در آن فضا انجام مي

شوند و هر مدل خطي نامیده مي 1اصطلاحاً ترفند کرنلي

تواند بوسیله اين ترفند کرنلي تبديل به يک مدل مي

 .]41[غیرخطي شود

ترفندکرنلي يک روش محبوب براي معرفي غیرخطي 

توان آنرا بودن در يک الگوريتم خطي ديگر است، که مي

: يکي، طراحي ريزي نمودبراساس دو ايده کلي پايه

الگوريتمي در فضاي ويژگي که در آن از ضرب داخلي 

استفاده گردد و ديگري، استفاده از يک تابع کرنلي که 

کننده ضرب داخلي بین دو نقطه در فضاي ويژگي توصیف

و بعنوان تابعي از اين دونقطه در نظرگرفته شود. از انواع 

هايي هستند هايي که قادر به انجام با چنین کرنلالگوريتم

هاي گوسي، ، پرازشSVM، 2توان به کرنل پرسپترونرا مي

PCAبندي طیفي و ، همبستگي کانولوشن، خوشه

 .]41[فیلترهاي تطبیقي اشاره کرد

هاي بر پايه کرنل، الگوريتم حداقل يکي از روش

باشد، که توسط سازي شده ميمربعات مقید کامل، کرنل

مختلف ارائه گرديد و قبلًا برودواتر و براي چندين کرنل 

توانند در اين گروه از روش ها نیز قرار بدان اشاره شد و مي

 .]89-87[گیرند

يا تصويربردار  (OSP)، الگوريتم 1994در سال 

زيرفضاي اورتوگونال بمنظور تعیین امضاهاي طیفي، 

، (OSP)بندي اهداف معرفي گرديد. پذيري و طبقهتفکیک

س مدل اختلاط خطي است و يک الگوريتم خطي براسا

قادر به برقراري همبستگي مراتب بالاتر باندهاي طیفي 

نیست، در نتیجه اختلاط غیرخطي امضاهاي طیفي در 

تواند تشخیص دهد. پس اين روش هاي واقعي را نميداده

هاي پیچیده خصوصاً در به اندازه کافي براي پردازش داده

ن روش در مورد تصاوير فراطیفي انعطاف پذير نیست. اي

هاي خطي زماني که داده بطورخطي تفکیک طبقه بندي

گردد. در اين حالت، پس نیافته باشد نیز دچار شکست مي

هاي واقعي در داخل يک فضا با ابعاد خیلي از تبديل داده

هاي بالا بوسیله يک نقشه برداري غیرخطي مناسب، داده

ابعاد  نقشه برداري شده بطور خطي در اين فضاي ويژگي

باشند. درهمین راستا، يک نسخه بالا قابل تفکیک مي

غیرخطي براساس کرنل از الگوريتم مذکور تحت عنوان 

                                                           
1 Kernel Trick 

2 Kernel perceptron 
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(KOSP)  بمنظور حل مسئله تعیین هدف زيرپیکسلي در

تصاوير فراطیفي معرفي گرديد و يک حالت جديدي از اين 

 .]105-107[ارائه شد 2006الگوريتم در سال 

نل براساس الگوريتم رگرسیوني ، يک کر2007در سال 

حداقل مربعات بمنظور تقريب غیرخطي مشخصات 

زيرپیکسلي تصاوير توسعه يافت، که مدل اختلاط خطي 

 1طیفي را درفضاي ويژگي ايجاد شده توسط کرنل مرسر

 .]108[کنداجرا مي

هاي کرنلي مورد اشاره ماهیتي نظارتي داشته الگوريتم

و همواره نیازمند به دانش قبلي از ماتريس اعضاي انتهايي 

، يک مدل جديد غیرنظارتي از 2010هستند. در سال 

براساس کرنل، تحت عنوان  (NMF)الگوريتم 

(KSCNMF) هاي اختلاطي بمنظور جداسازي داده

در يک فضاي غیرخطي معرفي گرديد. اين الگوريتم نیز 

ويژه با استفاده از تابع کرنلي و بمنظور اجتناب از 

 .]109[گرددپیچیدگي در فضايي با ابعاد بالا استنتاج مي

-هاي مختلفي از انواع الگوريتمهاي اخیر روشدر سال

توان سازي شده ارائه شده است، که ميکرنل (NMF)هاي 

سازي ینهرا نام برد که از به  (KDNMF)از آنها الگوريتم

هاي تابع هدف در يک فضاي ويژگي تحت محدوديت

ها غیرمنفي و تفکیک پذير، به کمک ساختار هندسي داده

نیز يک الگوريتم  (CKNMF)کند. الگوريتم استفاده مي

جداسازي فراطیفي غیرخطي کور )تک مرحله اي( است و 

هاي واقعي از طريق نقشه در آن ساختارغیرخطي داده

گیرد و هیچ ي حاصل از کرنل انجام ميبرداري غیرخط

بردن به نوع مدل غیرخطي ندارد. در اين روش نیازي به پي

بمنظور بهبود عملکرد، دو محدوديت حجم سادک و میزان 

 .]111,110[ها نیز در نظر گرفته شده استصافي فراواني

هاي گسترش يافته علاوه بر موارد فوق، الگوريتم

(NMF) از ديگر  .اندمعرفي شده ]115-112[ديگري در

توان به کارهاي چن هاي جداسازي براساس کرنل ميروش

اشاره نمود، که در آن معادلات اختلاط از دو بخش اختلاط 

خطي و نوسانات غیرخطي وابسته به امضاهاي طیفي 

اند. در اين حالت، تابع غیرخطي توصیف تشکیل يافته

نلي کننده اين نوسانات در يک فضاي هیلبرت کر

شود. اين خانواده از تعريف مي  (RKHS)بازتولیدشده

ها تفسیرهاي فیزيکي روشن و قابلیت محاسبه مدل

                                                           
1 Mercer 

ها تداخلات پیچیده اعضاي انتهايي را دارند. مقادير فراواني

نیز توسط يک مسئله رگرسیوني براساس کرنل مناسب 

گردد. در واقع اين هاي موجود تعیین ميتحت محدوديت

لي براي يک مسئله رگرسیوني براساس کرنل روش راه ح

داد. الگوريتم مذکور تحت عنوان مناسب را پیشنهاد مي

معرفي گرديد، منتها ضعف آن در  K-Hypeمدل اختلاط 

عدم تعادل بین تداخلات خطي و غیرخطي بود. در نتیجه 

معرفي  SK-Hypeبمنظور مديريت اين محدوديت، مدل 

فته مدل قبل، به مفهوم گرديد، که به عنوان تعمیم يا

يادگیري کرنلي چندگانه وابسته بوده و علاوه بر آن، 

-بطوراتوماتیک توزيع خطي و غیرخطي را نیز تنظیم مي

نمود. اين تکنیک در ادامه توسعه پیدا کرد، بطوريکه به آن 

يک ترم تصحیح فضايي بمنظور بهبود پیوستگي فضايي 

. در نهايت، ]120-116[هاي فراواني نیز اضافه گرديدنقشه

در  SVMاز کارهايي که در آن ملاک کرنل غیرخطي 

 ]128-121 [هايتوان به پژوهشنظرگرفته شده نیز مي

سري روش هاي براساس کرنل اخیراً نیز يک  اشاره کرد.

 2019بمنظور حل مدل هاي اختلاط غیرخطي در سال 

 .]131-129 [معرفي شده است

 )گروه دوم( هاهای مبتنی بر ابردادهروش -3

 های شبکه عصبی و فازیروش -3-1

، يک زمینه (ANN)هاي عصبي مصنوعي شبکه

-ها و يک محدوده وسیعي از معمارياي از پژوهشگسترده

ها را براساس زمان و بمنظور حل تنوعي از ها و مدل

هاي مسائل همچون: الگوي شناسايي، پیش بیني، سیستم

ارتباطات غیرخطي بندي و يادگیري کنترلي، خوشه

دهند. بطورکلي ها تشکیل ميپیچیده، در مجموعه داده

هاي عصبي بصورت ساختارگرافي جهت دار با رئوسي شبکه

ها و وروديو يکسري باشند، که نشان دهنده نورون مي

دهنده بین اين هاي وزن دار که ارتباطها و لبهخروجي

بوسیله  رئوس هستند، توصیف مي شوند. پويايي شبکه نیز

 .]132[گرددسازي براي هر نورون بیان ميقوانین فعال

 (MLP)ها، شبکه عصبي ترين معمارييکي از محبوب

است، که کاربرد فراواني در پردازش تصوير از جمله فرآيند 

در شکل  (MLP)جداسازي دارد. ساختار اولیه يک شبکه 

(، نشان داده شده، که از يک لايه ورودي، تعدادي لايه 10)

پنهان و يک لايه خروجي تشکیل يافته است. هر لايه از 
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ها ها از طريق اين نورونتعدادي نورون تشکیل شده، که لايه 

شوند. که خروجي هر نورون يک تابع به هم وصل مي

هاي ورودي است و اين خروجي، نورون در سیگموئید از داده

 .]41[کنددهي تغذيه مييه بعدي را بوسیله يک وزنلا

 
 ]MLP ]41ساختار و معماري يک شبکه عصبي  -10شکل 

خروجي -تواند بوسیله ارتباط وروديمي (MLP)شبکه 

هاي آموزش يابد. براي چنین يادگیري نظارتي، داده

آموزشي در شبکه موجود است. در اين حالت، خروجي 

شود که اين خطا محاسبه ميتعیین و يک سیگنال خطا 

شود تا میزان هاي ارتباطي بروزرساني ميبا توجه به وزن

 .]41[آن کاهش يابد

هاي عصبي، را هاي فرآيند جداسازي با شبکهاولین روش

استاندارد در مجموعه   (MLP)توان استفاده از شبکهمي

توسط فودي ارائه شد، 1996هاي غیرخطي که در سال داده

هايي از حالات بهبوديافته اين ، که در ادامه نمونهرا نام برد

. ]139-133[روش براي فرآيند جداسازي معرفي شده است

هاي ، از سري ديگري از شبکههمچنین در تحقیقات مشابه

نیز براي جداسازي غیرخطي استفاده و  (ART)عصبي بنام 

 .]141,140[ هاي ديگر مقايسه شدندبا تکنیک

نیز جهت جداسازي  (RBFNN)يک شبکه عصبي 

طراحي شد که با استفاده از دو مجموعه آموزشي، آموزش 

و مجموعه  (LMM)يابد: مجموعه بدست آمده با مدل مي

بدست آمده با معادلات هپکه. تکنیک مذکور نشان داد که 

مقادير فراواني بهتر و خطاي بارزسازي کمتري نسبت به 

 .]143,142[دهاي غیرخطي دارمدل خطي برروي داده

در پژوهشي ديگر بمنظور استخراج اعضاي انتهايي از 

بندي که قابلیت خوشه (SOM)يک شبکه عصبي 

هايي با ابعاد بالا را دارد استفاده شد. غیرنظارتي داده

 1خروجي اين شبکه بعنوان ورودي شبکه عصبي هاپفیلد

ها آموزش داده وارد و فراواني ها با توجه به اين ورودي

 .]144[شدند

                                                           
1 Hopfield 

هاي علاوه برآن، يک روش ترکیبي از ترکیب شبکه

توسط پلاتزا و  2004نیز در سال  MLPعصبي هاپفیلد و 

هاي عصبي نیز همکاران معرفي شده است. يکسري شبکه

 2011غیرخطي در سال  PCAبراي اين منظور براساس 

. اخیراً نیز يک نسخه ]148-145[اندطراحي شده

هاي ي عصبي تحت عنوان شبکههابهبوديافته از شبکه

عصبي عمیق موضوع نو و داغ پژوهشگران اين حوزه قرار 

 .]154-149[گرفته است

روش های غیرنظارتی )کاهش ابعادی  -3-2

 غیرخطی، یادگیری منیفولد و توپولوژی(

هاي غیرمنتظره در رياضیات قرن بیستم يکي از پیشرفت

باشد. مي رشد برق آساي موضوعي مرسوم به توپولوژي

توپولوژي از خواص اشیاء هندسي است که بر اثر تبديلات 

شوند. تبديل پیوسته، پیوسته اشیاء دستخوش تغییر نمي

تبديلي است که در آن نقاطي که در ابتدا نزديک به هم 

هستند در آخر تبديل هم، نزديک به هم باشند. مثل خم 

 کردن و کشیدن ولي پاره کردن يا شکستن مجاز نیست.

یاء اصلي مورد مطالعه در توپولوژي، فضاهاي اش

شوند. به طور شهودي بايد اين توپولوژيک خوانده مي

فضاها را به صورت اشکال هندسي تصور کرد. از لحاظ 

ساختاري  باهستند  هاييمجموعه ،رياضي اين فضاها

اضافي موسوم به توپولوژي، که امکان ساختن مفهوم 

و فضاي توپولوژيک هم ارز د د.نآورپیوستگي را فراهم مي

هستند هرگاه بتوان به طور پیوسته از يکي به ديگري رفت 

 و نیز به طور پیوسته به وضع اول برگشت.

-نوع خاصي از منیفولد توپولوژي، منیفولد ديفرانسیل

پذير نام دارد که تقريباً نزديک به هندسه ديفرانسیلي است 

نیفولدهاي و در واقع آنها با هم تئوري هندسي براي م

دهند. بعبارتي ديگر، پذير را تشکیل ميديفرانسیل

پذير قابل منیفولدي است که روي آن توابع ديفرانسیل

اند و با استفاده از حساب ديفرانسیل اين توابع قابل تعريف

پذير مشخصات و حل هستند. توپولوژي ديفرانسیل

ساختارهايي که نیازمند تنها يک ساختار نرم و صاف روي 

 .]41[گیرديک منیفولد تعريف شده است را در نظر مي

بعدي يک  nپذير هر نقطه از يک منیفولد ديفرانسیل

بعدي  nفضاي تانژانتي دارد در واقع، يک فضاي اقلیدسي 

يک نقطه است.  ها درشامل بردارهاي تانژانتي از منحني
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گیري فواصل و زوايا روي منیفولدها، منیفولد بمنظور اندازه

اي از هندسه ريماني شاخهبايستي ريماني باشد. مي

ريماني  منیفولدهاياست که به بررسي  هندسه ديفرانسیل

است که مجهز  منیفولدي ،ريماني منیفولدپردازد. يک مي

در  ضرب داخليباشد يعني يک مي متريک ريمانيبه يک 

يکنواخت در که به طور  منیفولد بر هر نقطه فضاي مماس

 .]41[استتغییر حال 

در پردازش تصاوير فراطیفي، هندسه ديفرانسیل و 

منیفولد با موفقیت براي کاربردهاي  هاي يادگیريتکنیک

اند، که نمونه بارز آن کاربرد در برده شده مختلفي بکار

باشد. اخیراً از بندي غیرخطي تصاوير فراطیفي ميطبقه

هاي يادگیري منیفولد در ايجاد الگوريتم کاربرد روش

 2011و  2010جداسازي غیرخطي غیرنظارتي که در سال

ارائه گرديد، استفاده شده توسط هیلن و همکاران 

 .]157-155[است

اگر طیف اعضاي انتهايي بطورغیرخطي اختلاط پیدا 

ها در فضاي طیفي معمولاً کنند، نقشه پراکندگي پیکسل

خیلي به فرم سادک نیست. شکل واقعي اين نقشه 

پراکندگي، وابسته به فیزيک موجود بین اختلاط طیفي 

تواند بین ه بوده و مياعضاي انتهايي يا مدل مورد استفاد

(، يک نقشه 11هاي مختلف با معني باشد. شکل )موقعیت

بخشي از زمین زراعي را  16و باند  10پراکندگي از باند 

ها دهد. با توجه به شکل مذکور، منیفولد دادهنشان مي

شکل بسیار نامتقارني دارد که نشان دهنده تعاملات 

 .]157[ها استغیرخطي پیچیده در داده

 
نقشه پراکندگي بخشي از زمین زراعي با منیفولد غیرخطي  -11شکل 

 ]157[هااز داده

اي به مجموعه زماني که ضرايب فراواني، از مجموعه

توان فرض کرد که طیف پیکسل ديگر پیوسته هستند، مي

مرتبط با آنها نیز از طیف ابتدايي تا طیف نهايي پیوستگي 

يک پرش گسسته در  بالايي دارد حال اگر چنین نباشد

در  دهد.ها رخ ميطیف مشاهده شده در مجموعه فراواني

بین فضاي ضرايب فراواني و  1بردارينتیجه يک نقشه

شود حل مناسبي باشد و فرض ميتواند راهفضاي طیفي مي

برداري يک ساختار توپولوژي از سادک را که اين نقشه

 .]157[کندحفظ مي

اران گراف نزديکترين در همین راستا، هیلن و همک

را معرفي و با استفاده از الگوريتم  (KNN)همسايگي 

بعنوان روش کاهش ابعاد غیرخطي، جداسازي  2ايزومپ

 N-FINDRغیرخطي تصاوير فراطیفي را با الگوريتم 

 .]155[کلاسیک انجام دادند

اين گراف نزديکترين همسايگي متقارن، متصل و وزن 

گردد براي ساخت سازي ميپیادهها شده بر روي دادهداده

نیز بايستي استفاده شود و K چنین گرافي، از يک ثابت 

 خود Kهرنقطه در فضاي طیفي با نزديکترين همسايگي 

با کوچکترين فاصله اقلیدسي و گراف متقارن( در ارتباط )

باشد. وزن هر لبه برابر طول اقلیدسي آن است و فاصله 

ن مسیر در میان گراف، وزن تريبین دو نقطه بعنوان کوتاه

 3داده شده است که مي توان آنرا با الگوريتم ديجکسترا

محاسبه نمود. از آنجا که ساختار گراف، هندسه کل 

گیرد، مسیرهايي که در طول ها را در برميمنیفولد داده

شوند منحني اين منیفولد را گیري مياين فاصله اندازه

 گردد.تقريبي حاصل ميکنند و فاصله ژئودزي دنبال مي

مثالي از گراف مذکور بر پايه فاصله ژئودزي در شکل 

  .]155,41[(، نشان داده شده است12)

 
 Aها: شکل مثالي از گراف تشکیل شده براي منیفولد داده -12شکل

ها، که خط چین فاصله اقلیدسي و خط ممتد فاصله منیفولد داده

 Cگراف حاصل بر روي منیفولد، شکل  Bژئودزي مي باشد، شکل 

 ]155,41[حالت مسطح و دوبعدي گراف مذکور

، در تکمیل کار قبلي 2011هیلن و همکاران در سال 

را  N-FINDRبمنظور جداسازي تصاوير فراطیفي الگوريتم 

هندسي( دوباره فرموله  NFINDRفواصل هندسي )در 

 .]157[کردند

بردار سادک هاي اخیر يک الگوريتم تصويرسالدر 

SPU  بمنظور آنالیز اختلاط طیفي خطي معرفي گرديد که

                                                           
1 Projection 
2 ISOMAP 

3 Dijkstra 
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هاي فراطیفي، با توانايي انجام جداسازي نظارتي داده 

هاي موجود بر روي آنها را دارد. بعلت رعايت محدوديت

هاي اي از روشاينکه در الگوريتم مذکور هیچ استفاده

 گیرد، عملکردسازي صورت نميحداکثرسازي يا بهینه

هاي جداسازي محاسباتي خیلي بالايي داشته و در موقعیت

-تر از خود نشان مي، نتايجي قابل قبولطیفي واقعي

. به کمک تکنیک استفاده از تبديل کلاسیک ]158[دهد

الگوريتم به هندسي، علاوه بر مرحله استخراج اعضاي 

پذيري و بمنظور توان در مرحله حل معکوسانتهايي مي

الگوريتم  ها نیز از آن استفاده نمود. بنابراينيافتن فراواني

بعنوان  (SPU)پذير جداسازي تصويربردار سادک معکوس

تکنیکي جديد در فرآيند جداسازي، در فاصله هندسي 

دوباره بازنويسي و با فواصل ژئودزي تقريب زده شده به 

هايي از کارآيي روش مثال .]159[ (DSPU)کارگیري شد

 ارائه شده است. ]161,160[ فوق نیز در مقالات

به جهت بهبود الگوريتم مذکور يک الگوريتم مؤثر ديگري 

ارائه شد، که  (VSPU)تحت عنوان تصويربردار سادک معتبر 

در آن يک مرحله اضافي جهت اعتبارسنجي و شروع الگوريتم 

از يک نقطه آغازي بهتر در مواردي که حل مسئله داراي 

 .]162[گرفته شده استکافي نیست در نظر  اعتبار

علاوه بر اين، يک روش کاربردي نیز از ترکیب روش 

در  (GBM) تقريبي فواصل ژئودزي با يک مدل دوخطي

توسط هیلن معرفي شده است که در آن  2012سال 

بمنظور رسیدن به ژئودزي تقريبي از هندسه ديفرانسیلي و 

هاي عددي استفاده شده است. همچنین، به جاي روش

زومپ بعنوان مرحله پیش پردازش از روش کاهش روش اي

استفاده شده که نتايج به مراتب  MDSابعادي غیرخطي 

 .]163[هاي قبلي داشته استبهتري نسبت به روش

يک تکنیک تخمین ابعاد مجازي نیز براساس مقیاس 

نسبت به فواصل نزديکترين همسايگي با توجه به ايده 

همکاران بنام  توسط هیلن و 2013روش بالا در سال 

تخمین ابعاد ذاتي فراطیفي با نزديکترين همسايگي 

(HIDENN)  معرفي گرديد. همچنین تأثیر اثر نويز نیز

برروي الگوريتم بررسي شد و با اضافه کردن اين آيتم، 

 .]165,164[ارتقاء يافت (DHIDENN)الگوريتم به 

يک چارچوب کلي از مراحل انجام يک فرآيند 

هندسه فاصله از مرحله تخمین ابعاد جداسازي براساس 

 2014اي در سال گرفته تا مرحله تخمین فراواني در مقاله

يک الگوريتم استخراج اعضاي  2015نیز ارائه شد. در سال 

انتهايي براي يک زنجیره جداسازي براساس حداکثرسازي 

در حالتي که آن قابلیت  (DMaxD)فاصله متعامد متوالي 

ي مختلف بجاي فاصله اقلیدسي را هااستفاده در متريک

 .]167,166[داشت توسط هیلن و همکاران معرفي شد

 نتیجه گیری -4

توان بعنوان بطورکلي، فرآيند جداسازي طیفي را مي

ابزار آنالیزي قدرتمندي در نظر گرفت که قادر به کشف 

ساختارهاي طیفي و فضايي ناپايدار و ناشناخته در تصاوير 

هاي مختلف ر بدست آمده از روشفراطیفي سنجش از دو

هاي خیلي محبوبي در هاي اختلاط خطي، مدلاست. مدل

هاي گذشته و حال فرآيند اختلاط تصاوير طیفي در دهه

ها هاي فراواني در طي اين سالشوند و تلاشمحسوب مي

ها شده است. با در زمینه طراحي و ارتقاء انواع اين الگوريتم

ر با اشراف به اين نکته که وجود اين حال، در سالیان اخی

ها و اثرات اختلاط طیفي غیرخطي در اکثر موقعیت

کاربردهاي مختلف انکارناپذير است و استفاده از انواع 

تري به هاي غیرخطي امکان دارد نتايج قابل قبولروش

 نهیزم نيدر ا ياگسترده يهاپژوهشهمراه داشته باشد، 

صورت گرفته و تعداد مقالات ارائه شده مرتبط با توسعه 

است که نشان  شيها روز به روز در حال افزاتميالگور نيا

دهنده علاقه پژوهشگران حوزه سنجش از دور به آن را 

هاي در مقاله حاضر، مروري بر اکثر روش رساند.يم

جداسازي غیرخطي مورداستفاده در پردازش تصاوير 

ها هاي مختلفي از اين روشبنديدستهدورسنجي شد. 

هاي دوخطي، چندخطي و اختلاط ذاتي، شامل انواع مدل

هاي بر پايه هاي شبکه عصبي و کرنلي و تکنیکروش

ها و توپولوژي تهیه گرديد. با توجه به مطالب منیفولد داده

هاي دوخطي و توان گفت که انواع مدلارائه شده مي

وبیت بیشتري برخوردار هاي شبکه عصبي از محبروش

-هستند. شايان ذکر است که امکان دارد برخي از الگوريتم

بندي مورداشاره قرار هاي ارائه شده در هیچ کدام از دسته

تواند بعنوان بندي فوق مينگیرد، به همین دلیل تقسیم

اي براي ورود پژوهشگران ملاک ابتدايي و معرفي اولیه

ه محسوب گردد و از حوزه سنجش از دور به اين زمین

حیث جامعیت امکان دارد کل مباحث موجود را پوشش 

 ندهد.
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 علائم اختصاری

Multilayer Perceptron MLP Artificial Neural Network ANN 

Multimixture Pixel Model MMP Adaptive Resonance Theory ART 

Minimun Mean Square Error MMSE Alternating Volume Maximization  AVMAX 

Minimum Noise Fraction MNF Bilinear Particle Swarm Optimization BiPSO 

Minimum Volume Transform-

Nonnegative Matrix Factorization 

MVC-

NMF 

Bilinear Normal Mixing Model BNMM 

Minimum Volume Enclosing Simplex MVES Bound Projected Optimal Gradient Method BPOGM 

Minimum Volume Simplex Analysis MVSA Bidirectional reflectance distribution 

function 

BRDF 

Nascimento Model NM Blind Source Seperation BSS 

Normalized P-Linear Algorithm NPLA Convex Cone Analysis CCA 

Orthogonal Subspace Projection OSP Constrained Hamiltonian Markov Chain CHMC 

Principal Component Analysis PCA Constrained Kernel NMF CKNMF 

P-harmonic mixing model PHMM Denoised HIDENN DHIDENN 

POlytope Decomposition POD Distance-geometry Maximal Distance  DMaxD 

Pixel Purity Index PPI Distance SPU DSPU 

Polynomial Post Nonlinear Mixing 

Model 

PPNMM Extended MLM EMLM 

Radial Basis Function RBF Endmember Variable LMM EVLMM 

Radial Basis Function Neural Network RBFNN Generalized Bilinear Model GBM 

Reconstruction Error  RE Hyperspectral Intrinsic Dimensionality 

Estimation with Nearest-Neighbor  

HIDENN 

Robust GBM RGBM Independent Component Analysis ICA 

Reproducting Kernel Hilbert Space RKHS Iterated Constrained Endmembers 

algorithm 

ICE 

Radiative transfer RT Iterative Error Analysis IEA 

Simplex Growing Algorithm SGA Instantaneous Field of View IFOV 

Spectral Information Divergence SID Kernel Discriminant NMF KDNMF 

Sinusoidal POD SiPOD Kernel-based Hyperspectral mixture model K-Hype 

Simplex Identification via variable 

Splitting Augmented Lagrangian 

SISAL Kernel - OSP KOSP 

Super K-Hype SK-Hype Kernel Spatial Complexity based Non-

negative Matrix Factorization 

KSCNMF 

Signal to Noise Ratio SNR Lattice Associative Memories LAM 

Sequential Maximum Angle Convex 

Cone 

SMACC Linear mixture of Intimate Mixture LIM 

Self-Organizing Map SOM Linear Mixture Model LMM 

Sparsity – Promoting ICE SPICE Least Square Error LSE 

Simplex Projection Umixing SPU Maximum A Posteriori MAP 

Single scattering albedo SSA Modified Bilinear Model MBM 

Successive Volume Maximization SVMAX Markov Chain Monte Carlo MCMC 

Support Victor Machine  SVM Multidimensional Scaling MDS 

Support Victor Regression SVR Modified GBM MGBM 

Vertex Component Analysis VCA Multiharmonic Postnonlinear Mixing 

Model 

MHPNM

M 

Validated SPU VSPU Multidimension ICA MICA 

  Multilinear Mixing Model MLM 
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