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Abstract 
Most of the land use change modelers have used to model binary land use change rather than multiple land 

use changes. As a first objective of this study, we compared two well-known LUC models, called classification 

and regression tree (CART) and artificial neural network (ANN) from two groups of data mining tools, global 

parametric and local non-parametric models, to model multiple LUCs. The case study is located in the north of 

Iran including cities of Sari and QaemShahr. Urban and agricultural changes over a period of 22 years between 

1992 and 2014 have been model. Results showed that CART and ANN were effective tools to model multiple 

LUCs. While it was easier to interpret the results of CART, ANN was more effective to model multiple LUCs. 

In earlier studies, despite using CART, the extraction of effective factors of LUCs using a precise index has not 

been considered efficiently. As a second objective, this study performed a sensitivity analysis using variable 

importance index to identify significant drivers of LUCs. While ANN was a black box for sensitivity analysis, 

CART identified significant delivers of LUCs easy. The results showed that the most important factors were 

distance from urban areas and rivers while aspect was the least effective factor. As a third or final objective of 

this study, the recently modified version of receiver operating characteristics (ROC) called total operating 

characteristic (TOC) as well as ROC were used for accuracy assessment of CART and ANN. The area under the 

ROC curves were 78% and 75% for urban changes for ANN and CART models, respectively. The area under the 

ROC curves were 72% and 65% for agricultural changes for ANN and CART models, respectively. We found 

that although TOC and ROC were similar to each other, TOC proved more informative than conventional ROC 

as a goodness-of-fit metric. The outcome of this study can assist planners and managers to provide sustainability 

in natural resources and in developing a better plan for future given the needs to understand those contributing 

factors in urban and agriculture changes. 

                                                           
 Corresponding Author 
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1. Introduction 

A city is a complex system where humans 

interact through their activities with the 

environment [1]. The reaction of cities against 

these activities has accelerated expansion of 

urban areas introducing a phenomenon known as 

land use change (LUC). It is widely known [2, 3, 

4, 5] that LUC is a very complex process with 

multiple drivers of LUC operating on a variety of 

spatio-temporal levels including demographic 

(e.g., population growth), economic (e.g., gross 

domestic product, [6]), bio-physical (e.g., 

elevation and soil), institutional (e.g., policies) 

and cultural issues [7].  

LUC leads to changes in climate [8], 

economy [9], food security [10], biodiversity 

and ecosystem, which are threats to human life 

and well-being. Therefore, many earth, 

environmental and atmospheric science 

applications are concerned about spatial 

distribution of land use such as agriculture, 

forest and urban [11, 12]. During the last three 

decades, urbanization in Iran has led to the 

expansion of housing and industry into 

previously open, low-populated areas that were 

originally natural areas and agricultural lands 

[13, 14]. As a result, disturbance of 

agricultural and forest areas has affected food 

safety of human populations and reduced 

biodiversity [15]. Some recovery of forests 

from shrub lands and abandoned agricultural 

land has occurred recently [16]. 

Different disciplines (e.g. economics, 

engineering, and environmental science) have 

applied a variety of data mining tools to extract 

underlying patterns of data [17]. Data mining 

methods generally include four groups [18]: 

global and local models each of which can be 

either parametric or non-parametric. Global 

models perform modeling using all available 

data while local models divide the data into 

separate subsets and fit separate models on 

each of the subsets. Parametric models have a 

fixed structure before the modeling process 

starts and they are model driven [18] while 

non-parametric models are data driven and 

usually do not have a fixed model structure or 

their model structure is unknown before the 

modeling process [18]. These four groups of 

models have been applied to quantify the 

relationship between dependent and multiple 

independent variables of LUC.  

Among these four groups of models, global 

parametric models (GPMs) and local non-

parametric models (LNPMs) have often been 

applied in various disciplines. As an example 

of GPMs in land change science, Tayyebi et al. 

(2008) [4] and  Pijanowski et al. (2014) [19] 

used artificial neural network (ANN) to model 

and predict urbanization in Tehran, Iran and 

the United States, respectively. Clarke et al. 

(1997) [20] used a cellular automaton (CA) 

model, called SLEUTH, to predict urbanization 

in the San Francisco Bay. Shan et al. (2008) 

[21] used genetic algorithms to enhance the 

efficiency of transition rule calibration in CA 

urban growth modeling. Finally, Pontius and 

Batchu (2003) [22] used IDRISI software to 

simulate land cover change in India and assess 

the power of IDRISI software. Classification 

and Regression Tree (CART, [23]) is a LNPM 

that has been widely used in data mining, 

including predicting business failure [24] and 

hypertension in people [25].  

GPMs and LNPMs have their advantages 

and disadvantages. GPMs can characterize 

LUC as earlier studies have shown [26]. It has 

been shown, if the accuracy of LUC model is 

the only concern, that GPMs usually provide 

better performance than LNPMs [27]. 

However, GPMs suffer from some limitations 

as well. For example, most of the GPMs 

assume that the spatial predictors have to 

follow a normal distribution for proper 

modeling while drivers of LUC rarely have 

such distributions [28]. Furthermore, most of 

the functions that GPMs use require prior 

knowledge about the relationship between 

input and output. Auto-correlation is another 

common issue concerning spatial predictors 

that affect the goodness-of-fit of LUC models 

[29]. GPMs usually suffer from auto-correlation 

since input variables are not independent from 

each other. Further problems arise with GPMs 

when more spatial predictors are included in the 

modeling process of LUC [30].  

Compared to GPMs, LNPMs do not need to 

have prior knowledge about the distribution 

(i.e., normal distribution) of data, and the form 

and parameters of the functions (i.e., linear or 

non-linear, means and standard deviations; 

[31]). LNPMs work easily with outliers and 

have the ability to detect them in modeling [32]. 

Moreover, the model structures of the LNPMs 

are not fixed and the model typically grows to 

fulfill the complexity in data [33]. LNPMs are 

able to detect non-linear relationships in data, 

variable selection, data transformation and 

variable reduction [34]. LNPMs usually have a 

302

C
o
m

p
ar

in
g

 A
N

N
 a

n
d

 C
A

R
T

 t
o

 M
o

d
el

 M
u
lt

ip
le

 L
an

d
 U

se
 C

h
an

g
es

 



simple structure which can be easily understood 

and interpreted [35]. To date, very few studies 

have compared the potential of LNPM and 

GPM to model LUC [18].  

The first objective of this study is to model 

multiple LUCs using CART and ANN in order 

to explore the interactions and competitions 

between multiple LUCs. The study was 

conducted in the north of Iran including cities 

of Sari and QaemShahr. We specifically 

modeled urban and agriculture changes over a 

period of 22 years between 1992 and 2014. 

Few studies have been focused on multiple 

land use change modeling (e.g., Verburg et al., 

2001 [36]; Li and Yeh 2002 [37]; Ballestores 

et al., 2012 [38]; Ralha et al., 2013 [39]; 

Tayyebi and Pijanowski 2014 [27]). While the 

previous studies have utilized the CA, ANN, 

and CART models, the ability of CART in 

variable selection has not been considered as 

yet. This advantage of CART would help to 

avoid collinearity issue, which is the non-

independence of predictor factors [40], among 

the explanatory variables as well as would help 

decision makers to identify the most important 

influential factors [41]. Therefore, the second 

objective of this study is to perform sensitivity 

analysis using variable importance index 

(VIM) to variable selection. 

There is no single calibration metric for 

LUC models that can provide unbiased 

interpretation of model performance [42]. 

Thus, many calibration metrics have been 

proposed by the LUC community. Among 

them, receiver operating characteristic (ROC) 

is one of the most common accuracy metric 

that has been used in land use science to 

calibrate LUC models. ROC compares the 

simulated map with the reference map for each 

given threshold using contingency table. 

However, ROC fails for cases where some 

types of error are more important than other 

types of error [43]. ROC also fails to reveal the 

size of each entry in the contingency table for 

each threshold [44]. Pontius and Si (2014) [45] 

recently introduced the total operating 

characteristic (TOC) to rectify the limitations 

of ROC. The third objective of this study is to 

calibrate CART and ANN for modeling 

multiple LUCs using ROC and TOC indices. 

We specifically compared ROC and TOC for 

calibration of urban and agricultural changes. 

Figure 1 shows the structure of the paper.

 
Fig. 1: Paper structure

2. Study Area and Methods 

2.1 Study Area 

The study area is part of Mazandaran 

Province located in northern Iran including two 

cities of Sari which is the capital of Mazandaran 

Province and QaemShahr. These cities are 

located between the northern slopes of the 

Alborz Mountains and southern coast of the 

Caspian Sea and have a hot-summer 

Mediterranean climate. Winters are cool and 

rainy whilst summers are hot and humid. The 

region's economy is mostly based on food 

production (e.g. milled rice, dairy products, 

canned meat, etc.). Sari is the most populous city 

of Mazandaran. According to a recent survey in 

2011, the population of Sari almost doubled 
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(from 141,020 in 1986 to 296,417 in 2011). Also, 

the population of QaemShahr almost doubled 

from 109,288 in 1986 to 196,050 in 2011. 

2.2 Classification and Regression Tree 

The logical steps of CART model are as 

follows: It starts with the entire set of input 

drivers at the root node (node at the top of the 

tree) and recursively divides the input data 

according to the independent variables that 

introduce the highest purity, which refers to 

the degree to which the leaf nodes (nodes 

without children) are made up of cases with 

the same land use class, and homogeneity 

within the internal nodes. Among the various 

variables, a variable is selected for a given 

node that can increase node purity. There are 

several criteria for data division in each of the 

nodes the most notable of which is the Gini 

index which is one of the attribute selection 

measures for the target variable with nominal 

values [46]. The Gini index at node t was 

determined using Eq.1: 

𝐺𝑖𝑛𝑖 (𝑡) =  ∑ 𝑃(𝑊𝑖) × 𝑃(𝑊𝑗)

𝑖≠𝑗

 (1) 

P(wi) in Eq. 1 is the relative frequency of class 

i. The process of tree growth continues until 

the highest purity at the leaf nodes (nodes 

without children) is achieved. 

2.2.1 Identification of Significant Drivers 

To determine the importance of each LUC 

driver in the modeling process and extract the 

most important drivers for decision-making, 

we used the VIM. CART implements Eq. 2 to 

identify the relative importance of variables 

[47]: 

𝑉𝐼𝑀(𝑥𝑗) =  ∑
𝑛𝑡

𝑁
 ∆𝐺𝑖𝑛𝑖 (𝑆(𝑥𝑗, 𝑡))

𝑇

𝑡=1

 (2) 

Where nt is the number of observations that 

belong to node t of the tree, N is the total 

number of observations,  nt/N is the proportion 

of observations that belong to node t of the 

tree, T is the total number of nodes and xj are 

spatial drivers of LUCs. ΔGini is the difference 

between the calculated Gini index at node t 

and its parent node (Eq. 3, [48]). 

∆𝐺𝑖𝑛𝑖 (𝑆(𝑥𝑗, 𝑡))

= 𝐺𝑖𝑛𝑖(𝑡) −  𝑃𝑙𝐺𝑖𝑛𝑖(𝑡𝑙)
−  𝑃𝑟𝐺𝑖𝑛𝑖(𝑡𝑟) 

(3) 

Pl and Pr are a fraction of the samples which go 

which go to the left and right node of node t.  

2.3 Artificial Neural Network 

Artificial neural networks (ANNs) are data 

mining tools capable of capturing non-linear 

associations underlying land use 

transformations [49]. The multi-layer 

perceptron, as used in this paper, typically 

includes an input, a hidden layer, and an output 

layer. These three layers are connected to each 

other in a feed-forward manner [18, 49, 51]. 

During the training, the initial model parameters 

are modified repeatedly until model outcomes 

represent the observed output as accurate as 

possible. ANNs start by randomly assigning the 

weightings and calculating the mean squared 

error (MSE), after which the cycle continues 

until a terminating criterion is met [52]. The 

MSE is measured by calculating the difference 

between the output from the network and the 

actual output presented in the training phase 

[19]. If the level of MSE is not attained, the 

error is distributed back to the neurons in the 

hidden layer, thus allowing them to update the 

weightings and mitigate the error. 

2.4 Accuracy and Error Estimation 

The primary output of the CART and ANN 

models are a suitability map after the training 

run. The suitability map shows the suitability 

of cells for either persistence or change. The 

suitability maps from both models were then 

converted to the simulated maps using the 

quantity of changes between the two dates. For 

this purpose, two referenced land use maps 

separated in time (t1 and t2) were compared to 

quantify the amount of LUCs and obtain the 

referenced change map. To assess the model 

performance, the simulated map was compared 

with the referenced change map. We used two 

well-known calibration metrics including ROC 

[22] and TOC [45] to assess the performance 

of the both models. 

2.4.1 Receiver Operating Characteristic 

ROC uses a series of thresholds to convert 

the suitability map to the simulated map. The 
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values greater than these thresholds in the 

suitability map are set to 1 (meaning LUC in 

the desired cell) and the other values are set to 

zero (meaning non-change in the desired cell). 

ROC then compares the simulated map with 

the reference map in t2 for each given threshold 

using the contingency table (Table 1). The 

disagreement (false positives, FP and false 

negatives, FN) and agreement (true positive, 

TP and true negative, TN) rates are the 

measure of model performance. After 

generating the contingency table (Table 1), 

sensitivity (Xt) and specificity (Yt) are 

calculated for the entire thresholds to plot the 

ROC curve (t indicates the threshold values). 

Where sensitivity is the proportion of correctly 

predicted change cells, and specificity is the 

proportion of correctly predicted no-change 

cells [54]. ROC curve consists of connecting 

the series of calculated ratios (Xt and Yt) for 

each threshold. The area under curve (AUC) 

represents accuracy of the model. 

Table 1: Using contingency table to compare simulated 

and referenced land use maps 

S
im

u
la

te
d

 m
ap

 

Reference map 

 Change Non-change 

Change True 

Positive 

(TP) 

False Negative 

(FN) 

Non-

change 

False 

Positive 

(FP) 

True Negative 

(TN) 

 P = TP + FP Q= FN + TN 

2.4.2 Total Operating Characteristic 

Although ROC has been frequently applied 

in LUC science [15], there have been 

numerous studies arguing against using ROC 

over the last two decades [45]. One of the most 

important limitations is that ROC fails to 

reveal the size of each entry in the contingency 

table for each threshold. Pontius and Si (2014) 

[45] recently suggested total operating 

characteristic (TOC) as an alternative to 

overcome the limitation of ROC. Although 

TOC creates a curve very similar to ROC, 

TOC curve is different from ROC curve in 

different ways. For example, TOC shows four 

members of the contingency table at once on 

TOC curve for each threshold [55, 53]. The 

TOC is more intuitive than ROC since it 

provides results based on the actual units in the 

contingency table instead of unit-less values 

such as ROC curve. Therefore, TOC shows the 

four members of the contingency table in real 

units rather than in percentages as in ROC. 

TOC plot shows the total number of cells on 

the horizontal axis, P + Q, and the total number 

of changed cells in the reference map on the 

vertical axis, P. Although TOC has maintained 

all the properties of ROC, for each threshold in 

the TOC curve, there are four entries in the 

contingency tables ([45], Table 1). The Xt and Yt 

axes in the TOC curve are equal to true positive 

+ false negative and true positive, respectively. 

To plot the TOC curve (Figure 2), we must first 

draw a parallelogram, vertices of which are equal 

to (0, 0), (P, P), (Q, 0), and (P+Q, P). P and Q 

indicate the number of observations which 

underwent changes or no changes between the 

two dates, respectively. The unit on both axes 

indicates the number of observations, considered 

as the number of cells for the given case study. 

For example, the horizontal axis varies from 0 to 

250 thousand cells, which is the size of the study 

area (P + Q). Moreover, the coordinate on the 

horizontal axis refers to the number of changed 

cells in the simulated map for a given threshold 

(True Positive + False Negative). In the same 

way, the vertical axis varies from 0 to 30 

thousand cells, which is the number of changed 

pixels in the reference map. Furthermore, the 

coordinate on the vertical axis refers to the 

number of cells which are predicted as change 

and have been actually changed in the reference 

map (TP). Then, TOC curve is drawn by Xt and 

Yt which were calculated using a contingency 

table. For each threshold, four numbers in the 

entries of probability table are given in Figure 2. 

The area under ROC curve is equal to the ratio of 

the area of TOC curve within the parallelogram 

to the whole area of the parallelogram. 

 
Fig. 2: Total Operating Characteristic (Pontiuse and Si, 2014) 
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3. Data Preparation and Model 

Implementation 

3.1 Data Preparation 

Since Mazandaran Province has abundant 

natural and agricultural resources to feed the 

country every year, it is essential to study the 

LUC which is in fact a threat to Iran’s natural 

resources. The main data sources used in this 

study were two Landsat images with 30m by 

30m spatial resolution in 1992 (TM) and 2014 

(ETM+). The two images were classified into 

urban, agricultural, river, forest and barren 

classes using maximum likelihood classification 

method. The overall accuracies (kappa index) of 

image classification for 1992 and 2014 were 

85.5% and 89.3%, respectively. Then, land use 

change map was obtained by comparing the two 

reclassified images (output of CART and ANN).  

Factors considered as drivers of change 

between 1992 and 2014 were elevation, aspect, 

slope, distance to urban, agriculture, river and 

road. The spatial drivers used in this study are 

common drivers used in previous LUC studies 

[56, 57]. Urban areas and land use classes, 

including urban, forest, river and agricultural 

lands, were extracted from land use map in 1992. 

Also, transportation network data were taken 

from the OpenStreetMap (OSM) collaborative 

database. Digital Elevation Model (DEM) was 

downloaded from the Iran National Cartographic 

Center website (ASTER with a spatial resolution 

of 30 m). Distance maps in1992 were formed 

using Euclidean distance function provided in 

GIS environment, for urban, forest, river, road, 

agricultural variables (inputs of CART and 

ANN). Moreover, slope and aspect maps were 

calculated using DEM in GIS. 

3.2 Model Implementation 

CART and ANN use spatial drivers in 1992 

and change and no-change areas between 1992 

and 2014 as output (Figure 3). The entire study 

area contains 269,937 cells. Salford Predictive 

Modeler and LTM software were used to 

model multiple LUCs and conduct sensitivity 

analysis of variables [27]. We divided the 

entire study area into training (60%) and 

testing (40%) datasets using stratified random 

sampling approach [18]. We used 60% of data 

to train both models. We then applied the 

trained models to the rest of the data to test the 

performance of ANN and CART. 

Fig. 3: Land use change map of the study area 

between 1992 and 2014 

4. Results 

4.1 Training run of ANN  

ANN contains an input layer including 

explanatory variables, a hidden layer, and an 

output layer. The input layer has seven nodes 

corresponding to seven predictor variables. 

According to Kolmogorov’s theorem [58], if n 

is the number of neurons in the input layer, 2n 

+ 1 hidden nodes can guarantee the perfect fit 

of any continuous functions so fifteen units 

was chosen for hidden layer. The output layer 

includes two nodes corresponding to our target 

land use classes, urban and agriculture.  The 

MSE starts around 0.2 and drops thorough 100 

cycles. We stopped training at 400 cycles 

where the MSE was 0.015. 

4.2 Variable Importance Index 

VIM index numbers have been calculated 

in the range of 0 to 100 (Figure 4). Distance to 

urban areas was the most important factor in 

the LUC. This variable is followed by the 

distance from the river factor. Likewise, the 

drivers of distance to agricultural areas, 

distance to roads and elevation are ranked in 

that order. The aspect variable has no influence 

on urban and agricultural changes and thus was 

removed from the list of predictor variables. 
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4.3 CART Simulation  

CART model has identified some variables 

to stand for land use changes including slope, 

elevation, distance to agriculture, distance to 

urban, distance to road and distance to river. 

The percentage of each land use can be seen at 

leaf nodes (Figure 5). Few leaves included 

only two land use classes (e.g. nodes 1, 2, 8, 9, 

10, 11, 12 and 13), whereas others had three 

land use classes (e.g. nodes 3, 4, 5, 6, 7, 16, 

17). This indicated the fact that drivers which 

classified leaf nodes with two land use classes 

were more significant than drivers which 

classified leaf nodes with three land use 

classes. Nodes 3, 5, 11 and 17 had the highest 

concentration of urban gain. Similarly, nodes 

1, 7, 15 and 19 had the highest concentration 

of agricultural gain (Figure 6).  

CART model had nineteen rules in the tree 

structure (equal to the number of leaves). To 

make each of the rules associated with each of 

the leaf nodes, users should start from the root 

node and reach leaf nodes through internal 

nodes. For example, in Figure 5, the rule related 

to leaf node 1 can be expressed as follows: if 

the distance to urban is less than 157 m, if the 

distance to urban is less than 15 m, and if 

elevation is less than 21.5 m, then44% of cells 

belonging to leaf node 1 are no-change class 

and 56% of them are under agricultural land use 

class. In order to generate the simulated map 

with multiple land use classes, the probability of 

cells can be ranked in descending order based 

on the number of changed land use classes 

between the two reference dates. Using the 

number of referenced changed cells and the 

range of possible values from low to high, cells 

were assigned to the change and no-change land 

use classes. 

4.4 Model Evaluation 

The area under the ROC curves were 78% 

and 75% for urban changes for ANN and 

CART models, respectively (Figure 7a). The 

area under the ROC curves were 72% and 65% 

for agricultural changes for ANN and CART 

models, respectively (Figure 7b). Results 

showed that ANN was more successful in 

simulating urbanization and agricultural 

changes compared to CART. In addition, ROC 

curve for urbanization reached a higher TP rate 

compared to agricultural gain ROC curve. This 

showed the fact that the model trained better 

for urbanization rather than agricultural gain. 

The area under ROC curve is equal to the 

ratio of the area under the TOC curve within the 

parallelogram to the total area of the 

parallelogram (Figure 8). From TOC curve, we 

can find out all the four parameters for each 

threshold. For examples, for a threshold of 0.62 

in the TOC curve for urbanization (Figure 8a), 

the values for TP, TN, FP and FN were 23279, 

185694, 9789 and 52284, respectively. Similarly, 

for a threshold of 0.76 in the TOC curve for 

agricultural gain (Figure 8b), the values for TP, 

TN, FP and FN were 43869, 145296, 19388 and 

103493, respectively. Also, urban and agriculture 

uses were predicted by ANN and CART for 

2036, respectively (Figure 9).  

5. Conclusion and Discussion 

In this paper, we used CART and ANN 

models to model multiple LUCs. We 

illustrated the predictive ability of CART and 

ANN for modeling multiple land-use changes 

for a study area in the north of Iran. The 

performance of the CART and ANN models 

were evaluated using ROC and TOC indexes. 

Overall, the obtained simulated maps show 

reasonable agreement with the observed data. 

We found ANN performed better than CART 

to model multiple LUCs. However, it was 

easier to interpret the results of CART due to 

the simplicity of CART structure and its 

effectiveness in simulating multiple LUCs. 

Error (FN and FP) were higher for 

agricultural change modeling compared to 

urban change modeling. The reason could be 

due to the patterns of agricultural gain in the 

given region which was more dispersed around 

the existing houses. This fact makes it difficult 

for both models to simulate this complex 

pattern. Other reasons might be the presence of 

other factors (e.g., land values and population 

growth) that impact agricultural LUC which 

have not been considered in this study due to 

data limitation in Iran. CART was more 

successful in simulating urbanization rather than 

agricultural gain since urbanization happened 

mostly around the existing urban areas. 

Although ANN was a black box to identify 

significant drivers of LUC, CART was very 

effective to rank significant drivers of LUC. 

CART model has recognized slope, elevation, 

distance to urban, agriculture, roads and water 

as the most important influential factors for 
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modeling multiple land use change. The 

importance of distance to urban areas is 

undeniable due to the placement of all facilities 

within the city and access to required places for 

people including administrative and recreational 

facilities as well as markets. Given that water is 

one of the most important factors for 

agricultural production (converting the lands 

around the lands around the river to agricultural 

lands). We found that TOC was more 

informative than ROC for model evaluation and 

tackled the limitations of ROC. The advantage 

of TOC over ROC was that TOC presented four 

members of the contingency table at the same 

time on the curve for each threshold. Scientists 

can calculate a variety of accuracy metrics for 

each threshold using the entries in the 

contingency table for each threshold. Moreover, 

entries in the contingency table can help to 

identify segments of the curve that are 

important for a specific application. For 

example, LUC modelers are interested in 

identifying the threshold at which the ROC 

curve becomes flat. This provides information 

about the distribution of suitability values in 

suitability map. In land change modeling, there 

are always errors linked with LUC modeling. 

The first type of error, which is the most 

common one, comes from the classification of 

satellite image data. In this images introduced 

errors into CART and ANN study, we used 

Landsat imageries to create land use maps at 

two dates. Errors in both classified modeling 

since data error can affect both inputs and 

outputs of LUC models. The second type of 

error occurs during the modeling process since 

LUC models are not perfect. In the future, 

attempts should be made to minimize the effect 

of these errors using more advanced 

classification algorithms and high resolution 

images. In addition, this study only used two 

referenced land use maps to calibrate both 

models. Although the prediction rate is 

satisfactory for the current date, it might not be 

satisfactory for another date. Since the 

application of this study is intended for the 

planners, using a third time land use map for a 

better evaluation is highly recommended [59].  

 
Fig. 5: Tree navigator of CART for importance drivers 

 
Fig. 4: Comparing the importance of predictor variables 
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Fig. 6: Terminal nodes in CART 

  

 
(a) 

 
(b) 

Fig. 7: The area under the ROC curves a) for urban change and b) for agriculture change

 
(a) 

 
(b) 

Fig. 8: TOC curves a) for urban change and b) for agriculture change
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(a) 

 
(b) 

Figure 9. Predicted a) agriculture use by CART and b) urban use by ANN for 2036

References 

[1] Batty, M., Y. Xie, and Z. Sun. (1999), “Modeling urban dynamics through GIS-based cellular automata,” 
Computers, Environment and Urban Systems, 23(3), pp. 205-233. 

[2] Verburg, P. H., T. C. M. Nijs, J. R. Eck, H. Visser, and K. Jong. (2004), “A method to analyze 
neighborhood characteristics of land use patterns,” Computers, Environment and Urban Systems 28(6), 
pp. 667–690. 

[3] Pontius Jr, R.G., W. Boersma, J. C. Castella, K. Clarke, T. de Nijs, C. Dietzel, Z. Duan, and et al.( 2008), 
“Comparing input, output, and validation maps for several models of land change,” Annals of Regional 
Science, 42(1), pp. 11-47. 

[4] Tayyebi, A., M.R. Delavar, S. Saeedi, and J. Amini. (2008), “Monitoring the urban expansion by multi-
temporal GIS maps. In: Application of Remote Sensing and Imagery.” Integrating Generations, FIG 
Working Week 2008 and FIG/ UNHABITAT Seminar. 

[5] Iiames, J. S., R. G. Congalton, and R. S. Lunetta. (2013), “Analyst variation associated with land cover 
image classification of Landsat ETM+ data for the assessment of coarse spatial resolution 
regional/global land cover products,” GIScience & Remote Sensing, 50(6), pp. 604-622. 

[6] Tayyebi, A. H., M. R. Delavar, A. Tayyebi, and M. Golobi. (2010), “Combining multi criteria decision 
making and Dempster Shafer theory for landfill site selection,” International Archives of the 
Photogrammetry, Remote Sensing and Spatial Information Science, Kyoto Japan, pp.1073-1078. 

[7] Geist, H., W. McConnell, E F. Lambin, E. Moran, D. Alves, and T. Rudel. (2006), “Causes and 
Trajectories of Land-Use/Cover Change, Land-Use and Land-Cover Change, Global Change,” The IGBP 
Series 2006, pp. 41-70. 

[8] Watson, R. T., I. R. Noble, B. Bolin, N. H. Ravindranath, D. J. Verardo, and D. J. Dokken.    (2000), 
“Land Use, Land-use Change and Forestry: A Special Report of the Intergovernmental Panel on Climate 
Change,” Cambridge University Press. 

[9] Long, H., G. K. Heilig, X. Li, and M. Zhang. (2007), “Socio-economic development and land-use change: 
Analysis of rural housing land transition in the Transect of the Yangtse River, China,” Land Use Policy, 
24(1), pp. 141-153. 

[10] Godfray, H. C. J., J. R. Beddington, I. R. Crute, L. Haddad, D. Lawrence, J. F. Muir, J. Pretty, S. 
Robinson, S.M. Thomas and C.  Toulmin. (2010), “Food security: the challenge of feeding 9 billion 
people,” Science, 327(5967), pp. 812-818. 

[11] NRC, (2005), “Radiative Forcing of Climate Change: Expanding the Concept and Addressing 
Uncertainties,” National Research Council, 208 p. 

[12] NRC, (2007), “Earth Science and Applications from Space: National Imperatives for the Next Decade 
and Beyond.” National Research Council 456 p. 

[13] Tayyebi, A., Pijanowski, B. C., & Tayyebi, A. H. (2011a), “An urban growth boundary model using neural 
networks, GIS and radial parameterization: An application to Tehran, Iran,” Landscape and Urban 
Planning, 100(1), pp. 35-44. 

294

C
o
m

p
ar

in
g
 A

N
N

 a
n

d
 C

A
R

T
 t

o
 M

o
d

el
 M

u
lt

ip
le

 L
an

d
 U

se
 C

h
an

g
es

 



[14] Tayyebi, A., Pijanowski, B. C., & Pekin, B. (2011b), “Two rule-based urban growth boundary models 
applied to the Tehran Metropolitan Area, Iran,” Applied Geography, 31(3), pp. 908-918. 

[15] Pijanowski, B. C., Tayyebi, A., Delavar, M. R., and Yazdanpanah, M. J. (2010), “Urban expansion 
simulation using geospatial information system and artificial neural networks,” International Journal of 
Environmental Research, 3(4), 493-502. 

[16] Diaz, G. I., L. Nahuelhual, C. Echeverría, and S. Marín. (2011), “Drivers of land abandonment in Southern 
Chile and implications for landscape planning,” Landscape and Urban Planning 99(3-4), pp. 207-217. 

[17] Li, M., J. Im, and C. Beier. (2013), “Machine learning approaches for forest classification and change 
analysis using multi-temporal Landsat TM images over Huntington Wildlife Forest,” GIScience & Remote 
Sensing, 50(4), pp. 361-384. 

[18] Tayyebi, A., B. C. Pijanowski, M. Linderman, and C. Gratton. (2014a), “Comparing three global 
parametric and local non-parametric models to simulate land use change in diverse areas of the world,” 
Environmental Modelling and Software, 59, pp. 202-221. 

[19] Pijanowski, B. C., A. Tayyebi, J. Doucette, B. K. Pekin, D. Braun, and J. Plourde. (2014), “A big data 
urban growth simulation at a national scale: Configuring the GIS and neural network based Land 
Transformation Model to run in a High Performance Computing (HPC) environment,” Environmental 
Modelling and Software, 51, pp. 250-268. 

[20] Clarke, K.C., S. Hoppen, and L. Gaydos. (1997), “A self-modifying cellular automation model of historical 
urbanization in the San Francisco Bay area,” Environment and Planning B: Planning and Design, 24 (2), 
pp. 247–261. 

[21] Shan, Jie., S. Alkheder, and J. Wang. (2008), “Genetic algorithms for the calibration of cellular automata 
urban growth modeling,” Photogrammetric Engineering & Remote Sensing, 10, pp. 1267-1277. 

[22] Pontius Jr, R.G., and K. Batchu. (2003), “Using the relative operating characteristic to quantify certainty 
in prediction of location of land cover change in India,” Transactions in GIS, 7 (4), pp. 467-484. 

[23] Breiman, L., J.H. Friedman, R.A. Olshen, and C.J. Stone. (1984), “Classification and Regression Trees,” 
Wadsworth, Belmont, CA. 

[24] Li H. and J. Jie Sun. (2009), “Predicting business failure using multiple case-based reasoning combined 
with support vector machine,” Expert Systems with Applications, 36 (6), pp. 10085–10096. 

[25] Ture, M., I. Kurt, A.T. Kurum, and K. Ozdamar. (2005), “Comparing classification techniques for 
predicting essential hypertension,” Expert Systems with Applications, 29 (3), pp. 583-588. 

[26] Lambin, E.F. and H.J. Geist. (Eds.) (2008), “Land-use and Land-Cover Change: Local Processes and 
Global Impacts,” Springer, Berlin. 

[27] Tayyebi, A. and B.C. Pijanowski. (2014), “Modeling multiple land use changes using ANN, CART and 
MARS: comparing tradeoffs in goodness of fit and explanatory power of data mining tools,” International 
Journal of Applied Earth Observation and Geoinformation, 28, pp. 102-116. 

[28] Lumley, T., P. Sutherland, A. Rossini, N. Lewin-Koh, D. Cook, and Z. Cox. (2002), “Visualizing high-
dimensional data in time and space: ideas from the Orca project,” Chemometrics and Intelligent 
Laboratory Systems, 60 (1-2), pp. 189-95. 

[29] Gobim, A., P. Campling, and J. Feyen. (2002), “Logistic modeling to derive agricultural land determinants: a 
case study from southeastern Nigeria,” Agriculture, Ecosystem and Environment, 89 (3), pp. 213-228. 

[30] Millington, J.D.A., G.L.W. Perry, and R. Romero-Calcerrada. (2007), “Regression techniques for examining 
land use/cover change: a case study of a Mediterranean landscape,” Ecosystems, 10 (4), pp. 562–578.  

[31] Zhao, Z. (2008), “Parametric and nonparametric models and methods in financial econometrics,” 
Statistics Surveys, 2, pp. 1-42. 

[32] De'Ath, G. and K.E.  Fabricius. (2000), “Classification and regression trees: a powerful yet simple 
technique for ecological data analysis,” Ecology, 81, pp. 3178–3192. 

[33] Hardle, W., M. Müller, S. Sperlich, and A. Werwatz. (2004), “Nonparametric and Semi parametric 
Models,” Springer Series in Statistics, Berlin. 

[34] Stanton, R. (1997), “A Nonparametric Model of Term Structure Dynamics and the Market Price of 
Interest Rate Risk,” Journal of Finance, 52 (5), pp. 1973-2002. 

[35] Timofeev, R. (2004), “Classification and Regression Trees (CART) Theory and Applications.” Master 
Thesis., Humboldt University Berlin. 

[36] Verburg, P.H., Soepbaoer, W., Veldkamp, A., Limpiada, R., Espaldon, V. and Mastura, S. (2002). “Modeling the 
spatial dynamics of regional land use: the CLUE S model.” Environmental Management, Vol. 30, pp. 391–405. 

293

Jo
u
rn

al
 o

f 
G

eo
m

at
ic

s 
S

ci
en

ce
 a

n
d
 T

ec
h
n
o
lo

g
y



[37] Li, X. and Yeh, A.G.O. (2002).” Neural-network-based cellular automata for simulating multiple land use 
changes using GIS.” International Journal of Geographical Information Science, Vol. 16, No. 4, pp.  323–343. 

[38] Ballestores Jr., F., Qiu, Z., Nedorezova, B.N., Nedorezov, L.V., Ferrarini, A., Ramathilaga, A. and Ackah, 
M. (2012).” An integrated parcel-based land use change model using cellular automata and decision 
tree.” Proc.  International Academy of Ecology and Environmental Sciences, Vol. 2, No. 2, pp. 53–69. 

[39] Ralha, C.G., Abreu, C.G., Coelho, C.G., Zaghetto, A., Macchiavello, B. and Machado, R.B. (2013).”A 
multi-agent model system for land-use change simulation.” Environmental Modeling & Software, Vol. 42, 
pp. 30–46.  

[40] Dormann, C. F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carré, G., . . . Leitão, P. J. (2013). 
Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. 
Ecography, 36(1), 27-46.  

[41] Peneva-Reed, E. (2014), “Understanding land-cover change dynamics of a mangrove ecosystem at the 
village level in Krabi Province, Thailand, using Landsat data,” GIScience & Remote Sensing, 51(4), pp. 
403-426. 

[42] MacLean, M. G., and R. G. Congalton. (2011), “Investigating issues in map accuracy when using an 
object-based approach to map benthic habitats,” GIScience & Remote Sensing, 48(4), pp. 457-477. 

[43] Dodd, L.E. and M.S. Pepe. (2003), “Partial AUC estimation and regression,” Biometrics, 59 (3), pp. 614–623. 

[44] Pontius Jr, R. G., and B. Parmentier. (2014), “Recommendations for using the relative operating 
characteristic (ROC),” Landscape Ecology, 29(3), pp. 367-382. 

[45] Pontius Jr, R. G., and K. Si. (2014), “The total operating characteristic to measure diagnostic ability for 
multiple thresholds,” International Journal of Geographical Information Science, 28(3), pp. 570-583. 

[46] Olson, D., and S. Yong. (2007), “Introduction to Business Data Mining,” McGraw Hill International Edition. 

[47] Tavakoli-Kashani, A., and A. Shariat-Mohaymany. (2011), “Analysis of the traffic injury severity on two 
lane, two-way rural roads based on classification tree models,” Safety Science, 49(10), pp. 1314–1320. 

[48] Mitchell, T.M. (1997), “Machine Learning.” Redmond, Washington, Basic Books. 

[49] Pijanowski, B. C., D.G. Brown, B.A. Shellito, and G.A. Manik. (2002), “Using neural networks and GIS to 
forecast land use changes: a Land Transformation Model,” Computers, Environment and Urban 
Systems, 26 (6), pp. 553–575. 

[50] Pijanowski, B.C., Tayyebi, A., Delavar, M.R., Yazdanpanah, M.J., (2009), “Urban expan-sion simulation 
using geographic information systems and artificial neuralnetworks” International Journal of 
Environmental Research, 3 (4), pp. 493–502. 

[51] Tayyebi, A., P. C. Perry, and A. H. Tayyebi. (2014b), “Predicting the expansion of an urban boundary 
using spatial logistic regression and hybrid raster–vector routines with remote sensing and GIS,” 
International Journal of Geographical Information Science, 28(4), pp. 639-659. 

[52] Bishop, C.M. (1995), “Neural Networks for Pattern Recognition,” Clarendon Press, Oxford. 

[53] Tayyebi, A., B. K. Pekin, B. C. Pijanowski, J. D. Plourde, J. S. Doucette, and D. Braun. (2013), 
“Hierarchical modeling of urban growth across the conterminous USA: developing meso-scale quantity 
drivers for the Land Transformation Model,” Journal of Land Use Science, 8(4), pp. 422-442. 

[54] Fielding, A.H. and J.F. Bell. (1997), “A review of methods for the assessment of prediction errors in 
conservation presence/absence models,” Environmental Conservation, 24 (1), pp. 38–49. 

[55] Cook, NR. (2007), “Use and misuse of the receiver operating characteristics curve in risk prediction,” 
Circulation, 115 (7), pp. 928–935. 

[56] Wang, J. and G. Mountrakis. (2011), “Developing a multi-network urbanization model: A case study of 
urban growth in Denver, Colorado,” International Journal of Geographical Information Science, 25 (2), 
pp. 229-253. 

[57] Feng, Y., and Y. Liu. (2013), “A heuristic cellular automata approach for modelling urban land-use 
change based on simulated annealing,” International Journal of Geographical Information Science, 
27(3), pp. 449–466. 

[58] Kolmogoro, A.N., 1956. On the representation of continuous functions of several variables as 
superpositions of functions of smaller number of variables, in: Soviet. Math. Dokl. pp. 179–182. 

[59] Chung, C. J. F., and A. G. Fabbri. (2003), “Validation of spatial prediction models for landslide hazard 
mapping,” Natural Hazards, 30(3), pp. 451-472. 

 

292

C
o
m

p
ar

in
g
 A

N
N

 a
n

d
 C

A
R

T
 t

o
 M

o
d

el
 M

u
lt

ip
le

 L
an

d
 U

se
 C

h
an

g
es

 

http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CB8QFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FRedmond%2C_Washington&ei=-hPFVJuIBOSHygPvwILoAw&usg=AFQjCNH-8a4jn8iR5yqRKQrSj1sfImE8OA&bvm=bv.84349003,d.bGQ

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12



