Journal of Geomatics Science and Technology, vol. 14, no. 2, pp. 119-133, December 2024- Research article

Land Cover and Land Use Extraction Based on Deep Learning
Methods Using Satellite Images

Pooya Heidari '*, Asghar Milan %, Alireza Gharagozlou *

1 Master student in Photogrammetry, Faculty of Civil, Water, and Environmental Engineering, Shahid
Beheshti University (SBU), Tehran, Iran, po.heidari@mail.sbu.ac.ir

2 Assistant Professor, Faculty of Civil, Water, and Environmental Engineering, Shahid Beheshti
University (SBU), Tehran, Iran, a_milan@sbu.ac.ir

3 Associate Professor, Faculty of Civil, Water, and Environmental Engineering, Shahid Beheshti
University (SBU), Tehran, Iran, a_gharagozlo@sbu.ac.ir

(Received: December 2023, Accepted: July 2024)

Abstract

Information on land use and cover needs to be gathered due to the growing urban population, city growth, and urbanization.
Applications for this data include environmental protection, urban planning, planning for urban infrastructure, and strategic
planning to guarantee the sustainable growth of urban areas. The primary source of data on land cover and land use at the
moment is remote sensing imagery. Information about land cover and land use can be retrieved from remote sensing images
using image classification techniques. In terms of classification accuracy, deep learning techniques recently outperformed other
methods for classifying land use and cover. Convolutional neural networks (CNNs), which are quite popular in this field, are one
of the significant deep learning classification architectures frequently used in land cover and land use classification. Recently, the
convolutional neural network technique known as ResNet has been applied to remote sensing applications, particularly for the
classification of land use and cover. ResNet models are an effective choice for classifying land cover and land use because they
can handle the vanishing gradient issue. The primary objective of this study is to assess the performance of the Glorot Uniform
and Random Uniform weight initializers in the ResNet50, ResNet101, and ResNet152 architectures for extracting the land cover
and land use of the EuroSat dataset. The weighted F1 score, IoU indexes, overall accuracy, and kappa coefficient were used to
evaluate the accuracy of the results. ResNet101's corresponding values for these indexes were, in turn, 0.8869, 0.7951, 0.8871,
and 0.8743. These results indicate that, in terms of classification accuracy, ResNet101 has outperformed the ResNet50 and
ResNet152 methods.
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1-Introduction

The population of cities has grown in recent
years due to urban growth and development. The
proportion of people living in cities worldwide grew
from roughly 30% in 1950 to 55% in 2018 and is
expected to reach 68% by 2050 [1]. Currently, cities'
patterns of land use and cover are changing as a
result of urbanization and rapid population growth
[2]. Information on land use and cover is essential for
many aspects of environmental research and studies
of global change, as urban areas grow due to
economic development and population growth.
Planning for long-term economic development and
short-term land management can both benefit from
timely and accurate national data on land cover and
use. The applications for such information include
infrastructure planning, urban planning, monitoring
urban growth, and environmental protection.
Assessing climate change, soil erosion, urban
climate, urban heat islands, ecosystem damage, flood
forecasting, and natural disasters can all benefit from
using this data. In addition, to ensure sustainable
urban development and meet the demands of a
growing urban population, an appropriate urban land
cover and land use planning method is crucial. The
primary data sources for accurate land cover and land
use data are remote sensing images, which can also
be used to generate land cover and land use data [3].

Since Francis J. Marschner started using aerial
photographs to create maps of the whole United
States in 1940, remote sensing data has been used to
classify land use and cover [4]. Following the launch
of a multispectral satellite in July 1972 and the
initiation of the Landsat program, research on the
classification of land use and cover using remote
sensing images has advanced to a certain point. The
establishment of the Landsat program and the release
of its data brought new challenges in data fusion,
temporal change detection, and ecological
applications in land cover and land use. Maps of
urban land cover and land use are frequently created
using data and images from remote sensing [5]. Land
cover and land use maps are frequently created using
remote sensing data from satellites, aircraft, and
drones [6]. The incredible progress in sensor
technology has made a vast amount of remote
sensing imagery available. These images become
the main source for spatial data extraction and can be
beneficial in a range of research applications. Large
areas can be covered by medium resolution images,
that tend to be accessible for free. Information
regarding land use and cover can be extracted using

them as well. Field surveys and conventional
interpretations are the main methods used to extract
and retrieve such data, which can be labor-and time-
intensive. Furthermore, considering the environment
is constantly evolving, data on land use and cover
must be updated frequently. As a result, it is
important to develop effective and efficient methods
for the automated extraction of land cover and land
use data, with classification serving as the main
method to generate maps of land cover and land use.

Deep learning algorithms have numerous
applications in studies regarding remote sensing [7],
with image classification being one of its most
significant  applications  [8].  Since  image
classification is so important in computer vision,
deep learning has become one of the most powerful
techniques in the field owing to the ongoing
advancement of artificial intelligence algorithms [9].
The field of remote sensing has brought more
attention to deep learning since 2014, and deep
learning algorithms have shown impressive results in
a range of image analysis tasks, such as classifying
land use and cover [10]. Once compared with other
approaches, deep learning-based classification
methods have numerous of advantages in regards to
classification accuracy. Methods for classifying land
cover based on deep learning have a lot of potential
for carrying out such tasks [11].

Deep learning can model hierarchical
representations of features, and such features can be
used to describe urban land cover and land use
patterns. Urban land cover and land use can be
classified extremely effectively using deep learning
models [12]. Deep learning outperforms traditional
methods in the extraction of multi-level spatial
features from remote sensing images, allowing for
high performance in image classification [13]. The
most significant of the primary advantages of deep
learning approaches is the fact that they can
adaptively learn different features from images [14],
unlike traditional classification methods that describe
land cover and land use based on spectral or spectral-
spatial features [15]. High performance and
flexibility are achieved by deep learning methods
[16], which can also be used to learn high-level
semantic features [17] and efficiently organize
multiple levels of information to express complex
relationships between data [18]. Neural network
architecture serves as the foundation for deep
learning classifiers. A neural network's input layers
are linked to output layers through hidden layers to
form its basic structure. These layers convert the
input data into output data by using parameters and
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activation functions. Each neuron's value is modified
by the weights of the connecting nodes to determine
how the input values are converted into output values
[19]. A neural network with many more layers and
parameters than a particular neural network is
referred to as "deep learning" [20]. The structure of
deep learning is shown in Figure 1.

° o
Input layer Output layer

Hidden layer

Figure 1: General structure of deep learing

Recurrent neural networks (RNNs) and
convolutional neural networks (CNNs) are the two
primary architectures used in deep learning [21].
Despite the fact that both architectures are deep
learning classifiers for remote sensing data [22],
CNNs are a more widely used technique for
classifying images [23, 24] and are also used
extensively for classifying land use and cover [25,
26]. Compared to other methods, they perform
better, are more accurate [27], and tend to be more
efficient. The extensive use of CNNs for classifying
land cover and land use is mainly owed to such
factors [28, 29].

This study's primary goal is examining and
evaluating the results of extracting the land cover and
land use of the EuroSat dataset using the Glorot

Inventing RNN models

Recognition of handwritten numbers
with LeNet Network which was the first

Uniform and Random Uniform weight initializers in
the ResNet50, ResNetl01, and ResNetl52
architectures. A brief overview of CNNs, their basic
structure, the EuroSat dataset, the ResNet deep
learning method, and research materials and
methodology will all be covered in the upcoming
sections. A brief overview of CNN models and some
research on using the ResNet network to classify the
EuroSat dataset are presented in the following
section.

2. Review on Past Research

2.1. CNN overview and history

When Fukushima first presented this network
architecture in 1988, it was not extensively utilized
due to the lack of computational hardware for
training [30]. In 1993, LeCun et al. [31] solved the
handwritten digit classification problem with
remarkable results using a gradient-based learning
algorithm on CNNs. Then, in 1997, RNN models—
which could analyze data like sounds or signals—
were developed. Deep learning reached stagnation
after the 1990s, essentially as an effect of hardware
and data shortages as well as issues with network
training [32]. The stagnation was basically ended in
2006 with the introduction of layer-by-layer
pretraining, a technique for training deep neural
networks [33]. When AlexNet, an advanced and
deep CNN, won the ImageNet competition in 2012,
CNN models started to become increasingly popular.
Other CNN models, like ResNet, have been
developed and utilized in numerous applications,
such as image classification, following AlexNet's
victory in the ImageNet challenge [34]. The timeline
for using CNN models is displayed in Figure 2.
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Figure 2: The background of CNN models
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2.2. Classifying EuroSat dataset with
ResNet models

The vanishing gradient and complexity problems
make neural network training more difficult and
time- and resource-consuming for deeper neural
networks. To address these issues, ResNet was
created in 2015, and since then, it has become
incredibly popular in the image classification field
[35]. Due to these benefits, ResNet has been widely
used in the EuroSat dataset for classifying land cover
and land use [36].

Kumar and Rohith [37] classified the EuroSat
dataset, which included residential areas, river and
lake classes, agricultural areas (annual and
permanent crops), and residential areas using the
ResNet34, ResNet50, ResNet101, and ResNetl52
networks. The networks' respective classification
accuracy was 0.9855, 0.9835, 0.9773, and 0.9641.
Moreover, these four networks had weighted F1
scores 0of 0.9120, 0.9925, 0.9873, and 0.9813.

Chen et al. [38] classified land cover and land use
using the ResNetl0l network and the EuroSat
dataset. Their classification accuracy was assessed
using the following metrics: weighted F1 score,
kappa coefficient, and overall accuracy, which were
0.9474, 0.9415, and 0.9471, respectively.

Chen and Tsou [39] classified land cover and
land use with an overall accuracy of 0.9463 using the
ResNet34 network and the EuroSat dataset.

Dimitrovski et al. [40] used the ResNet50 and
ResNet152 networks and the EuroSat dataset. The
classification accuracy of these two networks was
0.97 and 0.9740.

Using varying ratios of training to testing data,
Yamashkina et al. [41] employed the ResNet50
network and the EuroSat dataset. The study's most
accurate training and testing ratios were 90/10 and
80/20, and the network's training and test data ratios
had respective accuracy values of 0.9637 and 0.9643.

By utilizing the ResNet50 pre-trained model and
the EuroSat dataset, Mahamunkar and Netak [42]
were able to attain a classification accuracy of
0.9657.

With a training-to-testing ratio of 90/10, 20/80,
Zhang et al. [43] employed the ResNet50 network
and the EuroSat dataset; the resulting classification
accuracy was 0.7506 and 0.8853, respectively.

These studies indicate that ResNet is a powerful
CNN for classifying land use and cover data
collected from EuroSat. Therefore, to classify land
cover and land use, we used ResNet50, ResNet101,
and ResNetl52. These networks' identity and

convolutional blocks were initialized with Glorot
Uniform and Random  Uniform  weights,
respectively. The output of these networks was then
assessed using the kappa coefficient, overall
accuracy, weighted F1 score, IOU, and confusion
matrix—all of which will be covered in the
following sections.

3. Methodology and Materials

3.1. EuroSat dataset

Since deep learning techniques rely on data, the
development of an appropriate dataset has a big
impact on the results. Consequently, to train efficient
models, an extensive training set and an extensive
number of images are required [44]. Deep learning is
capable of extracting extremely complex decision
rules because of the vast amount of training data. A
number of datasets regarding land use and cover
have recently been created [45]. The EuroSat dataset
is one of the datasets that is commonly utilized in
deep learning to classify land use and cover. This
dataset's images are taken from publicly accessible
Sentinel-2A satellite imagery. The red, green, and
blue bands on the satellite's 13 bands have a spatial
resolution of 10 meters.

J
Figure 3: Sample images of annual crop (A), forest (B),
herbaceous vegetation (C), highway (D), industrial areas (E),
pasture (F), permanent crop (G), residential areas (H), river (I) and
sea and lake (J) classes in the EuroSat dataset
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There are 27,000 images in the EuroSat dataset,
organized into 10 classes. There are two to three
thousand images in each class. Annual crops, forests,
herbaceous vegetation, highways, industrial areas,
pastures, permanent crops, residential areas, rivers,
sea, and lakes comprise the classes included in this
dataset. Each image had a size of 64 x 64 pixels [46].
The EuroSat dataset is a medium resolution remote
sensing image dataset [47]. A sample image from
each class in this dataset is displayed in Figure 3.

3.2. Proposed Method

The research was carried out according to Figure
4.

EuroSat Dataset images

v

Selecting twenty percent of the data as test data to validate the
results

v

Selecting the remaining eighty percent of the data for
network learning

v

Network learning using ResNet50, ResNet101 and ResNet152 methods

v

Land cover and land use extraction

v

Evaluating the accuracy of land cover and land use extraction by kappa
coefficient, overall accuracy, weighted F1 score, IOU and confusion matrix|

Figure 4: The general workflow in this research

As can be seen in Figure 4, following the
acquisition of the images from the EuroSat dataset,
20% of the data were randomly chosen for testing the
results, while the remaining 80% of the data was
used for network training. For the intention of
classifying land use and cover, the ResNet50,
ResNet101, and ResNet152 networks were used.
Finally, accuracy metrics like the kappa coefficient,
overall accuracy, weighted F1 score, Intersection
over Union (IOU), and confusion matrix were also
used to assess the obtained accuracies in the
classification stage. The Convolutional Neural
Network, ResNet technique, and classification
accuracy evaluation indices are discussed in the
following sections.
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3.2.1. Convolutional Neural Network

A Convolutional Neural Network consists of
convolutional layers, pooling layers, and a fully
connected layer [48]. Figure 5 shows the architecture
of a convolutional neural network.

F_LLI

Input Convolutional ~ Pooling  Fully Output
l layer layer  connected J

Feature map

Figure 5: Architecture of Convolutional Neural Network

A convolutional neural network's primary
component is the convolutional layer. Therefore, by
applying kernels of a specific size to images, image
information can be extracted. Typically, the network
learns kernels, which focus on fundamental patterns
(such as edges, colors, shapes, and textures) that exist
in sufficiently deep convolutional neural networks.
Basic and comprehensive patterns have been
replaced with conceptual representations assigned to
certain sample categories. The pooling layer is only
used to assign the necessary parameters, like pooling
type, kernel size, and stride; it has no parameters to
learn. An activation function is added to improve the
network's performance. The learned feature
representations are mapped to the labeled sample
space by the fully connected layers, which serve as
classifiers [49].

In each layer, the input image is convolved with a
set of K kernels, W = {W,,W,, ..., W, }, and a bias
term, B = {by, b, ..., b}, is added to each feature
map, X;. After that, o, a non-linear transformation, is
applied to these features. This process is repeated for
each convolutional layer [ according to equation 1
[50].

Xi = oW e X 4 b M

3.2.2. ResNet method

ResNet models are a type of deep convolutional
neural networks that use residual learning to make
training very deep networks easier [51]. ResNet
models come in a variety of versions, the most
popular of which are the 5-variant models, each of
which has 18, 34, 50, 101, and 152 layers [52].
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ResNet's  architecture  consists of  multiple
convolutional layers connected by residual
connections. The input passes through several
convolutional layers in a regular convolutional neural
network before being transformed into a prediction.
In ResNet, a shortcut connection is added to bypass
some of the convolutional layers. This shortcut
connection allows the output of the previous layer to
be directly added to the output of the next layer,
creating a residual block. A residual block is formed
using two or more convolutional layers with a
shortcut connection. The ResNet structure has
proven effective in various computer-vision tasks,
including image classification.

The original ResNet152 model took first place in
one of the most significant computer vision
competitions, the large-scale ImageNet (ILSVRC)
visual recognition challenge in 2015. Numerous deep
learning models that developed after ResNet were
inspired by this popular and significant architecture
in the field [53]. ResNet uses residual connections to
enhance model performance overall. This method
provides it plausible to train much deeper networks
and solve optimization problems [54]. ResNet
models can also be applied to classify land use and
urban land cover [55]. Figure 6 presents the
network's structure.

Weight layer

Relu

X
Weight layer

F(x)+x é

A
Figure 6: The general structure of the ResNet

F(x) identity

Relu

The two primary ResNet network components
are the identity block and the convolutional block.
Equation 2 defines the identity block that is
employed in the ResNet network:

y =F(x,{(Wi}) +x 2

where x and y are the input and output vectors of
the considered layers. The function of
F(x,{Wi}) represents the trained residual map.
Figure 7 shows the ResNet Identity block.

Conv2D | BN BN

X

|

ReLU H Conv2D

BN‘ ReLU H Conv2D

RelU % ReLU }—»Y

Figure 7: ResNet Identity block

The first part is a two-dimensional convolution
layer with a stride of (1,1) and a filter size of (1x1).
Batch normalization was used to normalize the
channel axis, and the ReLU function was employed
to adjust the nonlinear activation function. With a
(fxf) filter size, the second component is similar to
the first.

In the convolutional block, the input and output
dimensions do not match. The shortcut connections
W, a perform linear mapping to change the
dimensions between x and F as follows in Equation 3:

y = F(x, {Wi}) + Wex (€)

where F is the output of the stacked layer, x and
y are the combined input and output vector of the
convolutional block. Figure 8 shows the ResNet
convolutional block.

Conv2D | BN

X Coov2D BN BN

Y

BN‘ ReLU H Conv2D

ReLU H Cony2D

Figure 8: ResNet Convolutional block

In the convolutional block, a 2D convolution
layer is added to the shortcut connection, which sets
it apart from the identity block. Convolutional blocks
are constructed using the same basic principles as
identity blocks, with the addition of a 2D
convolutional layer to the shortcut. The input x in
this shortcut has been resized to match the main path.
The output dimensions determine the filter size (1x1)
and stride (s, s) of the 2D convolutional layer. Lastly,
the output of the main path was combined with the
modified shortcut. Its capacity to address the issue of
vanishing gradients is the modified shortcut's
primary benefit [56].

The general ResNet50, ResNetl01, and
ResNet152 structures that were employed in this
study are explained. These networks are structurally
similar, with the primary difference being the
number of identity blocks and layers in the network.
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The ResNet networks used in this study are
displayed in Figure 9.

) |i

H
Zero Padding.

Batch Normalization
RelU
Max Pooling
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Max Pooling

Zero Padding
Batch Normalization

H
Zero Padding

Batch Normalization
RelU
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Figure 9: Overall structure of ResNet50 network (top), ResNet101
network (middle), and ResNet152 network (bottom)

Figure 9 shows how similar the ResNet50,
ResNet101, and ResNet152 networks' structures are
to each other. First, each of the three networks
receives the image as input, which is then passed
through a (3x3) zero padding layer. In the first stage,
all three networks share a stride of (2x2) and use a
2D convolutional layer with 64 filters of size (7x7).
Channel standardization is achieved through batch
normalization, following which the ReL U activation
function is employed. Finally, a max pooling layer
featuring a (2x2) stride is implemented.

A convolutional block and two identity blocks
consist of the second stage in each of the three
networks. In this stage, three sets of [256, 64, 64]
filters with a size of (3%3) and a stride of (1x1) are
used by both the convolutional and identity blocks.

The third stage of the networks ResNet50,
ResNet101, and ResNetl52 comprises one
convolutional block and three identity blocks, and
one convolutional block and seven identity blocks,
respectively. In this stage, three sets of [512, 128,
128] filters with (3x3) size and (2%2) stride are used
by both the convolutional and identity blocks.

In the fourth stage, one convolutional block and
five identity blocks form the structure of the
ResNet50 network, one convolutional block and
twenty-two identity blocks makes up the ResNet101
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network, and one convolutional block provides
through the ResNet152 network. In this stage, three
sets of [1024, 256, 256] filters with a size of (3%3)
and a stride of (2x2) are used by both the
convolutional and identity blocks.

All three networks have two identity blocks and
one convolutional block in the fifth stage. In this
stage, three sets of [1024, 256, 256] filters with a size
of (3x3) and a stride of (2x2) are used by both the
convolutional and identity blocks.

In the final stage, an average pooling layer of size
(2x2) is applied. Subsequently, the output passes
through a flattening layer, and eventually, the input is
reduced to the number of classes using a fully
connected layer. For this, the softmax activation
function applies.

3.2.3. Loss function and optimizer

One of the most important steps in a deep
learning-based classification is choosing the loss
function. In classification problems, the categorical
cross-cntropy loss function is usually applied.
Equation 4 contains the mathematical formula for
this loss function:

P L ;
@)= > yilog@h @

As indicated in the above formula, y. and 9}
show the correct and predicted probabilities that the
i-th sample belongs to the k-th class. K represents
the total number of target classes, p represents the
total number of samples, and (@) represents the
hypothesized set as a function of weights and biases
[57].

Selecting an optimizer function is an essential
step in deep learning-based classification. In this
study, Adam optimizer was used. This optimizer
works effectively with large data sets or parameters,
needs less memory, and is computationally
productive [58].

3.2.4. Accuracy evaluation

As generating maps using remote sensing data,
accuracy evaluation is vital because it allows one to
assess the performance of different classifiers as well
as the sampling impact. Furthermore, land cover
classification products must undergo validation and
accuracy assessment when trying to demonstrate the
quality of the remote sensing products [59].
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3.2.4.1. Kappa coefficient and Overall accuracy

The most widely used accuracy assessment
method for displaying an image's classification
accuracy is the kappa index. However, image
classification is validated using overall accuracy
[60]. The overall accuracy ranges from zero to one
hundred, where one hundred represents the highest
accuracy and zero represents the lowest. From zero
to one, the kappa coefficient indicates the accuracy,
with zero denoting the lowest accuracy and one
referring to the highest accuracy [61]. Equation 5
defines the formula for calculating the kappa
coefficient [62]:

Lz Xij = Xt j=1(Yi X Z)) 5)
NZ - Y; xZ;)

Kappa =

n
ij=1

In the above formula, N represents the total
number of ground truth points, n represents the total
number of land cover and land use classes, X; ; is the
sum of correctly classified points in row i and
column j, Y; represents the total number of points in
the rows and Z; represents the total number of points
in the columns.

A classified image's overall accuracy is
calculated by comparing each pixel's classification to
the known land cover conditions determined from
relevant ground truth data [63]. Equation 6 defines
the general formula for overall accuracy (OA) as
follows [64]:

0A = Number of correct pixels
" Number of pixels

x 100 (6)

3.2.4.2. F1 score

The F1 score, which measures the balance
between recall and precision, is a helpful quantitative
measure of learning data. The precision
measurements, also known as the positive predictive
value, quantifies the proportion of correctly
identified pixels in each class. The recall, also
referred to as sensitivity, shows the number of real
pixels found in each class [65]. Equations 7, 8, and 9
define the precision, recall, and F1 formula score
[66]:

True Positive

Precision = — —
True Positive + False Positive

Recall True Positive ®)
ecall =
True Positive + False Negative

e ) Precision X Recall )
=2
core Precision + Recall

The weighted F1 score determines a weighted
average with accounting for the dataset's class
balance. In Equation 10, the weighted F1 score
formula is mentioned [67]:

. k  Flscore;
weighted F1 score = ST N (10)
i=1 1V

3.2.4.3. Intersection over Union (IoU)

Intersection over Union (IoU) represents the ratio
of correctly classified pixels to the total number of
pixels between the reference and the obtained
classification. The formula for IoU is shown in
Equation 11 [68]:

TP

oV = 4o rp v PV (11)

where TP, FP, and FN indicate True Positive, False
Positive, and False Negative, respectively.

3.2.4.4. Confusion matrix

The conventional technique to assess uncertainty
in land cover and land use data is the confusion
matrix. This matrix has been applied to numerous
indices to assess the degree to which data estimates
and the ground truth match up. It provides a basis
for assessing classification accuracy and identifying
errors [69]. In remote sensing, the confusion matrix
has been used for quite a while. The land cover
classifications produced by the classification method
are represented by rows in this matrix, while the
categories identified by the ground truth, or land
cover reality, are represented by columns. The
number of observations associated to each class
combination is indicated by the cell values.
Typically, in order to test the classification method,
these observations are a sample of points for which
ground truth data has been collected [70]. A
confusion matrix needs to be used to evaluate
accuracy in order to ensure the level of classification
accuracy [71].

3.2.5. Weight initialization

Weight initialization is a crucial step in training a
neural network and involves adjusting weights
throughout the training process until the loss
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converges to a minimum. Consequently, weight
initialization plays a direct role in driving the
convergence of a network, so choosing an appropriate
weight initialization method is essential in the training
process. A well-selected weight initialization enables
accelerated network training and improved
performance [72]. In our research, we used Random
Uniform weight initializer for the identity block of
ResNet networks and Glorot Uniform weight
initializer for the convolutional block.

3.2.5.1. Glorot Uniform weight initializer

This approach to weight initialization sets
weights based on the input and output units in the
layers of the network, with the goal of maintaining
consistent variance in activations and gradients. This
approach significantly improved the training of deep
neural networks [73].

3.2.5.2. Random Uniform weight initializer

In this approach, the values of all weights are
assigned random numbers, typically selected from a
normal or uniform distribution. The influence of
exploding/vanishing gradients in deep neural
networks is significantly reduced by this method [74].

4. Implementing the proposed
method and presenting the results

Each network used in this study was trained
following the instructions in the previous section.
The number of epochs used to train the networks in
this study was 30 epochs. In each network, 80% of
the EuroSat dataset was used for network training
and 20% of the EuroSat dataset was used as test data
to evaluate the results and obtain the classification
accuracy for each network. The categorical cross-
entropy loss function and Adam activation function
were used in the ResNet deep learning networks.
Figure 10 shows the classification accuracy plots
over 30 epochs for the training and test datasets of
these three deep learning networks.

On the other hand, the loss plots show a
decreasing trend over each epoch for both the
training and test datasets. In addition, the
classification accuracy of the test data is lower than
the accuracy of the training data in the classification
accuracy plot, while the cost of the test data is higher
than the cost of the training data in the loss plot. This
indicates that our models are converging.
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Figure 10: Plots of classification accuracy in the ResNet50
network (right), ResNet101 network (center), and ResNet152
network (left) for the training and test datasets at each epoch.

Furthermore, Figure 11 shows the loss plots over
30 epochs for the training and test datasets of all
three networks.

As can be seen from the classification accuracy
graphs, the accuracy of both training and test datasets
increases as the number of epochs increases during
network training.

Lossoverepach 05 v egoch Loss over epoch

Figure 11: Loss plots in the ResNet50 network (right), ResNet101
network (center), and ResNetl152 network (left) for the training
and test datasets at each epoch.

Figure 12 shows the confusion matrices of these
three networks for land cover and land use
classification of EuroSat dataset.

The main diagonal values of the confusion matrix
indicate the true positive values. In the confusion
matrices provided, the columns represent the
predicted values while the rows represent the true
values. These matrices can be used to calculate,
various classification accuracy indices such as
overall accuracy, kappa coefficient, F1 score, and
IoU (Intersection over Union).

Table 1 shows precision, recall, and F1 score
indices for the ten classification classes of the
EuroSat dataset for the ResNet50, ResNet101, and
ResNet152 networks.
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The precision, recall, and F1 score metrics of the
ResNet50 model demonstrate strong performance
over a range of land cover and land use classes in the
EuroSat dataset. With precision values of 0.9088 for
rivers, 0.9640 for forests, and 0.9757 for lakes and

seas, it effectively reduces false positives. Recall
values for industrial areas are 0.9204, lakes and seas
are 0.9748, and forests are notable at 0.9135.
However, challenges are evident in the highway
0.8270 and herbaceous vegetation 0.8046 classes.

Confusion matrix

Prediced label

Confusion matrix

prediced label

0

0

o

Figure 12: Confusion matrix of ResNet50 network (left), ResNet101 network (middle), and ResNet152 network (right) 1‘:(;r i;md cover and land
use classification in the EuroSat dataset.

Table 1: Precision, Recall, and F1 score metrics for the ResNet50, ResNet101, and ResNet152 networks for the ten classification classes of the

EuroSat dataset.
Class
Index Network Annual Herbaceous Industrial Permanent | Residential
crop Forest vegetation Highway area Pasture crop area River |Seaand Lake

ResNet50 0.8873 | 0.9640 0.8584 0.8727 0.8914 0.8085 0.7276 0.8851 0.9088 0.9757
Precision | ResNetl01 0.8694 | 0.9466 0.8230 0.8732 0.8926 0.8410 0.7771 0.9404 0.9126 0.9685
ResNet152 0.8382 | 0.8993 0.6759 0.7222 0.8763 0.7589 0.7154 0.9017 0.8437 0.9654
ResNet50 0.8681 | 0.9135 0.8046 0.8270 0.9204 0.8539 0.8255 0.9474 0.8404 0.9748
Recall ResNet101 0.8743 | 0.9563 0.8511 0.8357 0.9422 0.8589 0.8045 0.9519 0.7840 0.9694
ResNet152 0.8498 | 0.9470 0.8339 0.6894 0.9032 0.8154 0.5247 0.9208 0.7567 0.9090
ResNet50 0.8776 | 0.9381 0.8306 0.8492 0.9056 0.8306 0.7735 0.9152 0.8733 0.9752
F1 Score | ResNetl01 0.8718 | 0.9514 0.8369 0.8540 0.9167 0.8498 0.7906 0.9461 0.8435 0.9690
ResNet152 0.8439 | 0.9225 0.7466 0.7054 0.8896 0.7862 0.6054 09111 0.7978 0.9363

The model's overall efficacy is highlighted by F1
scores such as 0.9752 for lakes and seas, 0.9381 for
forests, and 0.8733 for rivers.

For the ResNetl01 model, precision values of
0.9685 for lakes and seas, 0.9466 for forests, and
0.9404 for residential areas were achieved. Strong
recall values are observed in lakes and seas 0.9694,
forests 0.9563, and residential areas 0.9519,
reflecting the model's accuracy. F1 scores of 0.9514
for forests, 0.9690 for lakes and seas, and 0.9461 for
residential areas further attest to its effectiveness.

The ResNetl52 model's evaluation on the
EuroSat dataset results in significant precision values
of 0.8993 for forests, 0.9017 for residential areas, and
0.9654 for lakes and seas. Herbaceous vegetation,
pasture, and permanent crops with lower precision
scores present challenges. In contrast to difficulties in
permanent crops and highways, strong recall values
are found in forests, residential areas, and industrial
areas. The model's effectiveness is demonstrated by

F1 scores of 0.9225 for forests, 0.9363 for lakes and
seas, and 0.9111 for residential areas.

Table 2 displays kappa coefficient, overall
accuracy, weighted F1 score and IoU indexes for
ResNet50, ResNet101, and ResNet152 networks.
Table 2: Kappa coefficient, Overall Accuracy, weighted F1 score,

and weighted IoU indexes for the ResNet50, ResNet101, and
ResNet152 networks.

Index

Network -

Overall Kappa Weighted F1

. ToU

accuracy coefficient score
ResNet50 0.8804 0.8669 0.8808 0.7853
ResNet101 0.8871 0.8743 0.8869 0.7951
ResNetl152|  0.8233 0.8032 0.8213 0.6991

The results show that when using the EuroSat
dataset for land cover and land use classification
accuracy indices, the ResNet101 network performs
better than both the ResNet50 and ResNetl52
networks. However, the ResNet101 network and the
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ResNet50 network have very similar numerical
values for all indexes. The ResNetlOl network's
Overall Accuracy, Kappa coefficient, weighted F1
score, and weighted IoU were, in that order, 0.8871,
0.8743, 0.8869, and 0.7951. These index values for
the ResNet50 network were 0.8804, 0.8669, 0.8808,
and 0.7853, respectively. These values are very close
to the ResNetl01 index values. In addition, these

Actual: River
Predicted: River

© 10 20 30 4 50 60
Actual: Pasture
Predicted: AnnualCrop

o 10 20 30 40 50 60
Actual: SealLake
Predicted: SealLake

10

60

o 10 20 30 40 50 60

Actual: HerbaceousVegetation
Predicted: HerbaceousVegetation

Predicted: Forest

Predicted: Pasture

index values were 0.8233, 0.8032, 0.8213, and
0.6991 for the ResNet152 network, in that order. The
classification accuracy index results obtained for the
ResNet152 network are lower when compared to the
ResNet101 and ResNet50 networks.

Figure 13 demonstrates some of the predictions
using ResNet50 model which is from test data.

Actual: Forest
Predicted: Forest

50 60

40 50
Actual: PermanentCrop
Predicted: PermanentCrop

10

50 60 o

Figure 13: The ResNet50 sample results.
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Figure 14: The ResNet101 sample results.
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Figure 15: The ResNet152 sample results.

River, herbaceous vegetation, forest, highway,
sea, lake and permanent crop classes were all
correctly predicted by the ResNet50 model; however,
the pasture class was predicted incorrectly.

Some of the predictions made with the
ResNet101 model based on test data are displayed in
Figure 14.

Correct predictions were made for industrial
areas, lakes, rivers, and sea, but incorrect predictions
were made for highways and herbaceous vegetation
in the ResNet101 model.

Figure 15 shows some of the predictions using
the ResNet152 model based on test data.

The model accurately predicted the classes of
residential, industrial, pasture, and forest areas, but
the river class was predicted incorrectly.

5. Conclusion

Accurate information on land cover and land use
plays a crucial role in environmental applications,
infrastructure planning, and ensuring sustainable urban
development. Nowadays, a lot of remote sensing
imagery is available for obtaining information about
land use and cover due to advancements in satellite
technologies. Classification techniques must be
applied in order to extract this data from remote
sensing images. Deep learning techniques are widely
used in remote sensing studies for land cover and land
use classification because they lead to accurate
classification results. These techniques are capable of

modeling hierarchical characteristics, which are
crucial for land cover and land use classification.
Convolutional neural networks (CNNs) are common
deep learning architectures for classifying land cover
and land use due to their performance, efficiency, and
accuracy. ResNet is one of the CNNs used to
categorize land cover and land use. It uses residual
learning techniques to improve network training for
the determination of land cover and land use
information. The vanishing gradient problem can be
dealt with by ResNet models, making them an
effective choice for classifying land use and cover.
Since deep learning relies on data, choosing the right
dataset for network training affects the output and
outcomes significantly. Deep learning methods can be
applied to the EuroSat dataset to extract information
about land use and cover. The primary objective of
this study is to assess the performance of the Glorot
Uniform and Random Uniform weight initializers in
the ResNet50, ResNetl01, and ResNetl52
architectures for extracting the land cover and land use
of the EuroSat dataset. The performance of these
networks was then evaluated using the kappa
coefficient, overall accuracy, weighted F1 score, and
intersection over union (IoU). The corresponding
outcomes of these indexes for the ResNet50 network
were 0.8804, 0.8669, 0.8808, and 0.7853. The
ResNet152 network's index values were 0.8233,
0.8032, 0.8213, and 0.6991, while the ResNetl01
network's corresponding indexes were 0.8871, 0.8743,
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0.8869, and 0.7951. These results demonstrate that outperformed the ResNetl52 network in every

numerical values for the Kappa coefficient, overall classification accuracy index. Overall, the ResNet101
accuracy, weighted F1 score, and IoU do not network outperformed the ResNet50 and ResNet152
significantly differ between the ResNet50 and techniques in each accuracy assessment index.

ResNet101 networks. However, these two networks
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