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Abstract 
Information on land use and cover needs to be gathered due to the growing urban population, city growth, and urbanization. 

Applications for this data include environmental protection, urban planning, planning for urban infrastructure, and strategic 
planning to guarantee the sustainable growth of urban areas. The primary source of data on land cover and land use at the 
moment is remote sensing imagery. Information about land cover and land use can be retrieved from remote sensing images 
using image classification techniques. In terms of classification accuracy, deep learning techniques recently outperformed other 
methods for classifying land use and cover. Convolutional neural networks (CNNs), which are quite popular in this field, are one 
of the significant deep learning classification architectures frequently used in land cover and land use classification. Recently, the 
convolutional neural network technique known as ResNet has been applied to remote sensing applications, particularly for the 
classification of land use and cover. ResNet models are an effective choice for classifying land cover and land use because they 
can handle the vanishing gradient issue. The primary objective of this study is to assess the performance of the Glorot Uniform 
and Random Uniform weight initializers in the ResNet50, ResNet101, and ResNet152 architectures for extracting the land cover 
and land use of the EuroSat dataset. The weighted F1 score, IoU indexes, overall accuracy, and kappa coefficient were used to 
evaluate the accuracy of the results. ResNet101's corresponding values for these indexes were, in turn, 0.8869, 0.7951, 0.8871, 
and 0.8743. These results indicate that, in terms of classification accuracy, ResNet101 has outperformed the ResNet50 and 
ResNet152 methods. 
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e 1-Introduction 

The population of cities has grown in recent 
years due to urban growth and development. The 
proportion of people living in cities worldwide grew 
from roughly 30% in 1950 to 55% in 2018 and is 
expected to reach 68% by 2050 [1]. Currently, cities' 
patterns of land use and cover are changing as a 
result of urbanization and rapid population growth 
[2]. Information on land use and cover is essential for 
many aspects of environmental research and studies 
of global change, as urban areas grow due to 
economic development and population growth. 
Planning for long-term economic development and 
short-term land management can both benefit from 
timely and accurate national data on land cover and 
use. The applications for such information include 
infrastructure planning, urban planning, monitoring 
urban growth, and environmental protection. 
Assessing climate change, soil erosion, urban 
climate, urban heat islands, ecosystem damage, flood 
forecasting, and natural disasters can all benefit from 
using this data. In addition, to ensure sustainable 
urban development and meet the demands of a 
growing urban population, an appropriate urban land 
cover and land use planning method is crucial. The 
primary data sources for accurate land cover and land 
use data are remote sensing images, which can also 
be used to generate land cover and land use data [3]. 

Since Francis J. Marschner started using aerial 
photographs to create maps of the whole United 
States in 1940, remote sensing data has been used to 
classify land use and cover [4]. Following the launch 
of a multispectral satellite in July 1972 and the 
initiation of the Landsat program, research on the 
classification of land use and cover using remote 
sensing images has advanced to a certain point. The 
establishment of the Landsat program and the release 
of its data brought new challenges in data fusion, 
temporal change detection, and ecological 
applications in land cover and land use.  Maps of 
urban land cover and land use are frequently created 
using data and images from remote sensing [5]. Land 
cover and land use maps are frequently created using 
remote sensing data from satellites, aircraft, and 
drones [6].  The incredible progress in sensor 
technology has made a vast amount of remote 
sensing imagery available.  These images become 
the main source for spatial data extraction and can be 
beneficial in a range of research applications. Large 
areas can be covered by medium resolution images, 
that tend to be accessible for free. Information 
regarding land use and cover can be extracted using 

them as well. Field surveys and conventional 
interpretations are the main methods used to extract 
and retrieve such data, which can be labor-and time-
intensive. Furthermore, considering the environment 
is constantly evolving, data on land use and cover 
must be updated frequently. As a result, it is 
important to develop effective and efficient methods 
for the automated extraction of land cover and land 
use data, with classification serving as the main 
method to generate maps of land cover and land use. 

Deep learning algorithms have numerous 
applications in studies regarding remote sensing [7], 
with image classification being one of its most 
significant applications [8]. Since image 
classification is so important in computer vision, 
deep learning has become one of the most powerful 
techniques in the field owing to the ongoing 
advancement of artificial intelligence algorithms [9]. 
The field of remote sensing has brought more 
attention to deep learning since 2014, and deep 
learning algorithms have shown impressive results in 
a range of image analysis tasks, such as classifying 
land use and cover [10]. Once compared with other 
approaches, deep learning-based classification 
methods have numerous of advantages in regards to 
classification accuracy. Methods for classifying land 
cover based on deep learning have a lot of potential 
for carrying out such tasks [11]. 

Deep learning can model hierarchical 
representations of features, and such features can be 
used to describe urban land cover and land use 
patterns. Urban land cover and land use can be 
classified extremely effectively using deep learning 
models [12]. Deep learning outperforms traditional 
methods in the extraction of multi-level spatial 
features from remote sensing images, allowing for 
high performance in image classification [13]. The 
most significant of the primary advantages of deep 
learning approaches is the fact that they can 
adaptively learn different features from images [14], 
unlike traditional classification methods that describe 
land cover and land use based on spectral or spectral-
spatial features [15]. High performance and 
flexibility are achieved by deep learning methods 
[16], which can also be used to learn high-level 
semantic features [17] and efficiently organize 
multiple levels of information to express complex 
relationships between data [18]. Neural network 
architecture serves as the foundation for deep 
learning classifiers. A neural network's input layers 
are linked to output layers through hidden layers to 
form its basic structure. These layers convert the 
input data into output data by using parameters and 
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e activation functions. Each neuron's value is modified 

by the weights of the connecting nodes to determine 
how the input values are converted into output values 
[19]. A neural network with many more layers and 
parameters than a particular neural network is 
referred to as "deep learning" [20]. The structure of 
deep learning is shown in Figure 1. 

 
Figure 1: General structure of deep learning 

 
Recurrent neural networks (RNNs) and 

convolutional neural networks (CNNs) are the two 
primary architectures used in deep learning [21]. 
Despite the fact that both architectures are deep 
learning classifiers for remote sensing data [22], 
CNNs are a more widely used technique for 
classifying images [23, 24] and are also used 
extensively for classifying land use and cover [25, 
26]. Compared to other methods, they perform 
better, are more accurate [27], and tend to be more 
efficient. The extensive use of CNNs for classifying 
land cover and land use is mainly owed to such 
factors [28, 29]. 

This study's primary goal is examining and 
evaluating the results of extracting the land cover and 
land use of the EuroSat dataset using the Glorot 

Uniform and Random Uniform weight initializers in 
the ResNet50, ResNet101, and ResNet152 
architectures. A brief overview of CNNs, their basic 
structure, the EuroSat dataset, the ResNet deep 
learning method, and research materials and 
methodology will all be covered in the upcoming 
sections. A brief overview of CNN models and some 
research on using the ResNet network to classify the 
EuroSat dataset are presented in the following 
section. 

2. Review on Past Research 

2.1. CNN overview and history 

When Fukushima first presented this network 
architecture in 1988, it was not extensively utilized 
due to the lack of computational hardware for 
training [30]. In 1993, LeCun et al. [31] solved the 
handwritten digit classification problem with 
remarkable results using a gradient-based learning 
algorithm on CNNs. Then, in 1997, RNN models—
which could analyze data like sounds or signals—
were developed. Deep learning reached stagnation 
after the 1990s, essentially as an effect of hardware 
and data shortages as well as issues with network 
training [32]. The stagnation was basically ended in 
2006 with the introduction of layer-by-layer 
pretraining, a technique for training deep neural 
networks [33]. When AlexNet, an advanced and 
deep CNN, won the ImageNet competition in 2012, 
CNN models started to become increasingly popular. 
Other CNN models, like ResNet, have been 
developed and utilized in numerous applications, 
such as image classification, following AlexNet's 
victory in the ImageNet challenge [34]. The timeline 
for using CNN models is displayed in Figure 2. 

 

 
Figure 2: The background of CNN models 
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e 2.2. Classifying EuroSat dataset with 

ResNet models 

The vanishing gradient and complexity problems 
make neural network training more difficult and 
time- and resource-consuming for deeper neural 
networks. To address these issues, ResNet was 
created in 2015, and since then, it has become 
incredibly popular in the image classification field 
[35]. Due to these benefits, ResNet has been widely 
used in the EuroSat dataset for classifying land cover 
and land use [36]. 

Kumar and Rohith [37] classified the EuroSat 
dataset, which included residential areas, river and 
lake classes, agricultural areas (annual and 
permanent crops), and residential areas using the 
ResNet34, ResNet50, ResNet101, and ResNet152 
networks. The networks' respective classification 
accuracy was 0.9855, 0.9835, 0.9773, and 0.9641. 
Moreover, these four networks had weighted F1 
scores of 0.9120, 0.9925, 0.9873, and 0.9813. 

Chen et al. [38] classified land cover and land use 
using the ResNet101 network and the EuroSat 
dataset. Their classification accuracy was assessed 
using the following metrics: weighted F1 score, 
kappa coefficient, and overall accuracy, which were 
0.9474, 0.9415, and 0.9471, respectively. 

Chen and Tsou [39] classified land cover and 
land use with an overall accuracy of 0.9463 using the 
ResNet34 network and the EuroSat dataset. 

Dimitrovski et al. [40] used the ResNet50 and 
ResNet152 networks and the EuroSat dataset. The 
classification accuracy of these two networks was 
0.97 and 0.9740. 

Using varying ratios of training to testing data, 
Yamashkina et al. [41] employed the ResNet50 
network and the EuroSat dataset. The study's most 
accurate training and testing ratios were 90/10 and 
80/20, and the network's training and test data ratios 
had respective accuracy values of 0.9637 and 0.9643. 

By utilizing the ResNet50 pre-trained model and 
the EuroSat dataset, Mahamunkar and Netak [42] 
were able to attain a classification accuracy of 
0.9657. 

With a training-to-testing ratio of 90/10, 20/80, 
Zhang et al. [43] employed the ResNet50 network 
and the EuroSat dataset; the resulting classification 
accuracy was 0.7506 and 0.8853, respectively. 

These studies indicate that ResNet is a powerful 
CNN for classifying land use and cover data 
collected from EuroSat. Therefore, to classify land 
cover and land use, we used ResNet50, ResNet101, 
and ResNet152. These networks' identity and 

convolutional blocks were initialized with Glorot 
Uniform and Random Uniform weights, 
respectively. The output of these networks was then 
assessed using the kappa coefficient, overall 
accuracy, weighted F1 score, IOU, and confusion 
matrix—all of which will be covered in the 
following sections. 

3. Methodology and Materials 

3.1. EuroSat dataset 

Since deep learning techniques rely on data, the 
development of an appropriate dataset has a big 
impact on the results. Consequently, to train efficient 
models, an extensive training set and an extensive 
number of images are required [44]. Deep learning is 
capable of extracting extremely complex decision 
rules because of the vast amount of training data. A 
number of datasets regarding land use and cover 
have recently been created [45]. The EuroSat dataset 
is one of the datasets that is commonly utilized in 
deep learning to classify land use and cover. This 
dataset's images are taken from publicly accessible 
Sentinel-2A satellite imagery. The red, green, and 
blue bands on the satellite's 13 bands have a spatial 
resolution of 10 meters.  

 
A                         B                       C 

 
D                         E                       F 

 
G                         H                       I 

                        
                       J  

Figure 3: Sample images of annual crop (A), forest (B), 
herbaceous vegetation (C), highway (D), industrial areas (E), 

pasture (F), permanent crop (G), residential areas (H), river (I) and 
sea and lake (J) classes in the EuroSat dataset 
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e There are 27,000 images in the EuroSat dataset, 

organized into 10 classes. There are two to three 
thousand images in each class. Annual crops, forests, 
herbaceous vegetation, highways, industrial areas, 
pastures, permanent crops, residential areas, rivers, 
sea, and lakes comprise the classes included in this 
dataset. Each image had a size of 64 × 64 pixels [46]. 
The EuroSat dataset is a medium resolution remote 
sensing image dataset [47]. A sample image from 
each class in this dataset is displayed in Figure 3. 

3.2. Proposed Method 

The research was carried out according to Figure 
4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: The general workflow in this research 

As can be seen in Figure 4, following the 
acquisition of the images from the EuroSat dataset, 
20% of the data were randomly chosen for testing the 
results, while the remaining 80% of the data was 
used for network training. For the intention of 
classifying land use and cover, the ResNet50, 
ResNet101, and ResNet152 networks were used. 
Finally, accuracy metrics like the kappa coefficient, 
overall accuracy, weighted F1 score, Intersection 
over Union (IOU), and confusion matrix were also 
used to assess the obtained accuracies in the 
classification stage. The Convolutional Neural 
Network, ResNet technique, and classification 
accuracy evaluation indices are discussed in the 
following sections. 

3.2.1. Convolutional Neural Network 

A Convolutional Neural Network consists of 
convolutional layers, pooling layers, and a fully 
connected layer [48]. Figure 5 shows the architecture 
of a convolutional neural network. 

 
 
 
 
 
 
 
 
 
 
 

Figure 5: Architecture of Convolutional Neural Network 
 

A convolutional neural network's primary 
component is the convolutional layer. Therefore, by 
applying kernels of a specific size to images, image 
information can be extracted. Typically, the network 
learns kernels, which focus on fundamental patterns 
(such as edges, colors, shapes, and textures) that exist 
in sufficiently deep convolutional neural networks. 
Basic and comprehensive patterns have been 
replaced with conceptual representations assigned to 
certain sample categories. The pooling layer is only 
used to assign the necessary parameters, like pooling 
type, kernel size, and stride; it has no parameters to 
learn. An activation function is added to improve the 
network's performance. The learned feature 
representations are mapped to the labeled sample 
space by the fully connected layers, which serve as 
classifiers [49]. 

In each layer, the input image is convolved with a 
set of ܭ kernels, ܹ = { ଵܹ , ଶܹ, … , ௞ܹ}, and a bias 
term, ܤ = {ܾଵ, ܾଶ, … , ܾ௞}, is added to each feature 
map, ܺ௞. After that, ߪ, a non-linear transformation, is 
applied to these features. This process is repeated for 
each convolutional layer ݈ according to equation 1 
[50]. 
 
ܺ௞௟ = )ߪ ௞ܹ

௟ିଵ ∗ ܺ௟ିଵ + ܾ௞௟ିଵ) (1) 
 

3.2.2. ResNet method 

ResNet models are a type of deep convolutional 
neural networks that use residual learning to make 
training very deep networks easier [51]. ResNet 
models come in a variety of versions, the most 
popular of which are the 5-variant models, each of 
which has 18, 34, 50, 101, and 152 layers [52]. 

Input  Convolutional 
layer  

Output  Pooling 
layer  

Fully 
connected 

Feature map  

EuroSat Dataset images 

Evaluating the accuracy of land cover and land use extraction by kappa 
coefficient, overall accuracy, weighted F1 score, IOU and confusion matrix  

Selecting the remaining eighty percent of the data for 
network learning 

Selecting twenty percent of the data as test data to validate the 
results  

Network learning using ResNet50, ResNet101 and ResNet152 methods 

End  

Land cover and land use extraction 
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e ResNet's architecture consists of multiple 

convolutional layers connected by residual 
connections. The input passes through several 
convolutional layers in a regular convolutional neural 
network before being transformed into a prediction. 
In ResNet, a shortcut connection is added to bypass 
some of the convolutional layers. This shortcut 
connection allows the output of the previous layer to 
be directly added to the output of the next layer, 
creating a residual block. A residual block is formed 
using two or more convolutional layers with a 
shortcut connection. The ResNet structure has 
proven effective in various computer-vision tasks, 
including image classification. 

The original ResNet152 model took first place in 
one of the most significant computer vision 
competitions, the large-scale ImageNet (ILSVRC) 
visual recognition challenge in 2015. Numerous deep 
learning models that developed after ResNet were 
inspired by this popular and significant architecture 
in the field [53]. ResNet uses residual connections to 
enhance model performance overall. This method 
provides it plausible to train much deeper networks 
and solve optimization problems [54]. ResNet 
models can also be applied to classify land use and 
urban land cover [55]. Figure 6 presents the 
network's structure. 

 
 
 
 
 
 
 
 
 
 
 

Figure 6: The general structure of the ResNet 

The two primary ResNet network components 
are the identity block and the convolutional block. 
Equation 2 defines the identity block that is 
employed in the ResNet network: 
 
ݕ = ,ݔ)ܨ {ܹ݅}) +  (2) ݔ

 
where ݔ and ݕ are the input and output vectors of 

the considered layers. The function of 
,ݔ)ܨ {ܹ݅}) represents the trained residual map. 
Figure 7 shows the ResNet Identity block. 

 

 
Figure 7: ResNet Identity block 

 
The first part is a two-dimensional convolution 

layer with a stride of (1,1) and a filter size of (1×1). 
Batch normalization was used to normalize the 
channel axis, and the ReLU function was employed 
to adjust the nonlinear activation function. With a 
(f×f) filter size, the second component is similar to 
the first. 

In the convolutional block, the input and output 
dimensions do not match. The shortcut connections 
௦ܹ a perform linear mapping to change the 

dimensions between ݔ and ܨ as follows  in Equation 3: 
 

ݕ = ,ݔ)ܨ {ܹ݅}) + ௦ܹ(3) ݔ 
 

where ܨ is the output of the stacked layer, ݔ and 
 are the combined input and output vector of the ݕ
convolutional block. Figure 8 shows the ResNet 
convolutional block. 

 

 
Figure 8: ResNet Convolutional block 

 
In the convolutional block, a 2D convolution 

layer is added to the shortcut connection, which sets 
it apart from the identity block. Convolutional blocks 
are constructed using the same basic principles as 
identity blocks, with the addition of a 2D 
convolutional layer to the shortcut. The input x in 
this shortcut has been resized to match the main path. 
The output dimensions determine the filter size (1×1) 
and stride (s, s) of the 2D convolutional layer. Lastly, 
the output of the main path was combined with the 
modified shortcut. Its capacity to address the issue of 
vanishing gradients is the modified shortcut's 
primary benefit [56]. 

The general ResNet50, ResNet101, and 
ResNet152 structures that were employed in this 
study are explained. These networks are structurally 
similar, with the primary difference being the 
number of identity blocks and layers in the network. 

Weight layer 

Weight layer 

Relu 

Relu 

x 
identity F(x) 

F(x)+x 
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displayed in Figure 9. 
 

 
Figure 9: Overall structure of ResNet50 network (top), ResNet101 

network (middle), and ResNet152 network (bottom) 
 

Figure 9 shows how similar the ResNet50, 
ResNet101, and ResNet152 networks' structures are 
to each other. First, each of the three networks 
receives the image as input, which is then passed 
through a (3×3) zero padding layer. In the first stage, 
all three networks share a stride of (2×2) and use a 
2D convolutional layer with 64 filters of size (7×7). 
Channel standardization is achieved through batch 
normalization, following which the ReLU activation 
function is employed. Finally, a max pooling layer 
featuring a (2×2) stride is implemented. 

A convolutional block and two identity blocks 
consist of the second stage in each of the three 
networks. In this stage, three sets of [256, 64, 64] 
filters with a size of (3×3) and a stride of (1×1) are 
used by both the convolutional and identity blocks. 

The third stage of the networks ResNet50, 
ResNet101, and ResNet152 comprises one 
convolutional block and three identity blocks, and 
one convolutional block and seven identity blocks, 
respectively. In this stage, three sets of [512, 128, 
128] filters with (3×3) size and (2×2) stride are used 
by both the convolutional and identity blocks. 

In the fourth stage, one convolutional block and 
five identity blocks form the structure of the 
ResNet50 network, one convolutional block and 
twenty-two identity blocks makes up the ResNet101 

network, and one convolutional block provides 
through the ResNet152 network. In this stage, three 
sets of [1024, 256, 256] filters with a size of (3×3) 
and a stride of (2×2) are used by both the 
convolutional and identity blocks. 

All three networks have two identity blocks and 
one convolutional block in the fifth stage. In this 
stage, three sets of [1024, 256, 256] filters with a size 
of (3×3) and a stride of (2×2) are used by both the 
convolutional and identity blocks. 

In the final stage, an average pooling layer of size 
(2×2) is applied. Subsequently, the output passes 
through a flattening layer, and eventually, the input is 
reduced to the number of classes using a fully 
connected layer. For this, the softmax activation 
function applies. 

3.2.3. Loss function and optimizer  

One of the most important steps in a deep 
learning-based classification is choosing the loss 
function. In classification problems, the categorical 
cross-cntropy loss function is usually applied. 
Equation 4 contains the mathematical formula for 
this loss function: 
 

(߆)ܬ = ෍ ෍ ௞௜ݕ  log (ݕො௞௜ ) 
௄

௞ୀଵ

௣

௜ୀଵ
 (4) 

 
As indicated in the above formula, ݕ௞௜  and ݕො௞௜  

show the correct and predicted probabilities that the 
i-th sample belongs to the k-th class. ܭ represents 
the total number of target classes, ݌ represents the 
total number of samples, and (߆) represents the 
hypothesized set as a function of weights and biases 
[57]. 

Selecting an optimizer function is an essential 
step in deep learning-based classification. In this 
study, Adam optimizer was used. This optimizer 
works effectively with large data sets or parameters, 
needs less memory, and is computationally 
productive [58]. 

3.2.4. Accuracy evaluation 

As generating maps using remote sensing data, 
accuracy evaluation is vital because it allows one to 
assess the performance of different classifiers as well 
as the sampling impact. Furthermore, land cover 
classification products must undergo validation and 
accuracy assessment when trying to demonstrate the 
quality of the remote sensing products [59]. 
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e 3.2.4.1. Kappa coefficient and Overall accuracy 

The most widely used accuracy assessment 
method for displaying an image's classification 
accuracy is the kappa index. However, image 
classification is validated using overall accuracy 
[60]. The overall accuracy ranges from zero to one 
hundred, where one hundred represents the highest 
accuracy and zero represents the lowest. From zero 
to one, the kappa coefficient indicates the accuracy, 
with zero denoting the lowest accuracy and one 
referring to the highest accuracy [61]. Equation 5 
defines the formula for calculating the kappa 
coefficient [62]: 
 

ܽ݌݌ܽܭ =
ܰ∑ ௜ܺ,௝

௡
௜,௝ୀଵ −∑ ( ௜ܻ × ௝ܼ)௡

௜,௝ୀଵ

ܰଶ − ∑ ( ௜ܻ × ௝ܼ)௡
௜,௝ୀଵ

 (5) 

 
In the above formula, ܰ represents the total 

number of ground truth points, ݊ represents the total 
number of land cover and land use classes, ௜ܺ,௝  is the 
sum of correctly classified points in row ݅ and 
column ݆, ௜ܻ represents the total number of points in 
the rows and ௝ܼ represents the total number of points 
in the columns. 

A classified image's overall accuracy is 
calculated by comparing each pixel's classification to 
the known land cover conditions determined from 
relevant ground truth data [63]. Equation 6 defines 
the general formula for overall accuracy (OA) as 
follows [64]: 
 

ܣܱ =
ݏ݈݁ݔ݅݌ ݐܿ݁ݎݎ݋ܿ ݂݋ ݎܾ݁݉ݑܰ

ݏ݈݁ݔ݅݌ ݂݋ ݎܾ݁݉ݑܰ × 100 (6) 

 

3.2.4.2. F1 score 

The F1 score, which measures the balance 
between recall and precision, is a helpful quantitative 
measure of learning data. The precision 
measurements, also known as the positive predictive 
value, quantifies the proportion of correctly 
identified pixels in each class. The recall, also 
referred to as sensitivity, shows the number of real 
pixels found in each class [65]. Equations 7, 8, and 9 
define the precision, recall, and F1 formula score 
[66]: 
 

݊݋݅ݏ݅ܿ݁ݎܲ =  
݁ݒ݅ݐ݅ݏ݋ܲ ݁ݑݎܶ

݁ݒ݅ݐ݅ݏ݋ܲ ݁ݑݎܶ +  ݁ݒ݅ݐ݅ݏ݋ܲ ݁ݏ݈ܽܨ
(7) 

 

ܴ݈݈݁ܿܽ =  
݁ݒ݅ݐ݅ݏ݋ܲ ݁ݑݎܶ

݁ݒ݅ݐ݅ݏ݋ܲ ݁ݑݎܶ +  (8) ݁ݒ݅ݐܽ݃݁ܰ ݁ݏ݈ܽܨ

 

݁ݎ݋ܿܵ 1ܨ =  2 ×
݊݋݅ݏ݅ܿ݁ݎܲ × ܴ݈݈݁ܿܽ
+݊݋݅ݏ݅ܿ݁ݎܲ ܴ݈݈݁ܿܽ 

(9) 

 
The weighted F1 score determines a weighted 

average with accounting for the dataset's class 
balance. In Equation 10, the weighted F1 score 
formula is mentioned [67]: 
 

݁ݎ݋ܿݏ 1ܨ ݀݁ݐℎ݃݅݁ݓ =
∑ ௜௞݁ݎ݋ܿݏ 1ܨ
௜ୀଵ
∑ ௜ܰ
௞
௜ୀଵ

 (10) 

 

3.2.4.3. Intersection over Union (IoU) 

Intersection over Union (IoU) represents the ratio 
of correctly classified pixels to the total number of 
pixels between the reference and the obtained 
classification. The formula for IoU is shown in 
Equation 11 [68]: 
 

ܷ݋ܫ =
ܶܲ

ܶܲ+ ܲܨ +  ,ܰܨ
 

(11) 

where TP, FP, and FN indicate True Positive, False 
Positive, and False Negative, respectively. 

3.2.4.4. Confusion matrix 

The conventional technique to assess uncertainty 
in land cover and land use data is the confusion 
matrix. This matrix has been applied to numerous 
indices to assess the degree to which data estimates 
and the ground truth match up. It provides a basis 
for assessing classification accuracy and identifying 
errors [69]. In remote sensing, the confusion matrix 
has been used for quite a while. The land cover 
classifications produced by the classification method 
are represented by rows in this matrix, while the 
categories identified by the ground truth, or land 
cover reality, are represented by columns. The 
number of observations associated to each class 
combination is indicated by the cell values. 
Typically, in order to test the classification method, 
these observations are a sample of points for which 
ground truth data has been collected [70]. A 
confusion matrix needs to be used to evaluate 
accuracy in order to ensure the level of classification 
accuracy [71]. 

3.2.5. Weight initialization 

Weight initialization is a crucial step in training a 
neural network and involves adjusting weights 
throughout the training process until the loss 
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e converges to a minimum. Consequently, weight 

initialization plays a direct role in driving the 
convergence of a network, so choosing an appropriate 
weight initialization method is essential in the training 
process. A well-selected weight initialization enables 
accelerated network training and improved 
performance [72]. In our research, we used Random 
Uniform weight initializer for the identity block of 
ResNet networks and Glorot Uniform weight 
initializer for the convolutional block. 

3.2.5.1. Glorot Uniform weight initializer 

This approach to weight initialization sets 
weights based on the input and output units in the 
layers of the network, with the goal of maintaining 
consistent variance in activations and gradients. This 
approach significantly improved the training of deep 
neural networks [73]. 

3.2.5.2. Random Uniform weight initializer 

In this approach, the values of all weights are 
assigned random numbers, typically selected from a 
normal or uniform distribution. The influence of 
exploding/vanishing gradients in deep neural 
networks is significantly reduced by this method [74]. 

4. Implementing the proposed 
method and presenting the results 

Each network used in this study was trained 
following the instructions in the previous section. 
The number of epochs used to train the networks in 
this study was 30 epochs. In each network, 80% of 
the EuroSat dataset was used for network training 
and 20% of the EuroSat dataset was used as test data 
to evaluate the results and obtain the classification 
accuracy for each network. The categorical cross-
entropy loss function and Adam activation function 
were used in the ResNet deep learning networks. 
Figure 10 shows the classification accuracy plots 
over 30 epochs for the training and test datasets of 
these three deep learning networks.  

On the other hand, the loss plots show a 
decreasing trend over each epoch for both the 
training and test datasets. In addition, the 
classification accuracy of the test data is lower than 
the accuracy of the training data in the classification 
accuracy plot, while the cost of the test data is higher 
than the cost of the training data in the loss plot. This 
indicates that our models are converging. 

 
Figure 10: Plots of classification accuracy in the ResNet50 

network (right), ResNet101 network (center), and ResNet152 
network (left) for the training and test datasets at each epoch. 

Furthermore, Figure 11 shows the loss plots over 
30 epochs for the training and test datasets of all 
three networks. 

As can be seen from the classification accuracy 
graphs, the accuracy of both training and test datasets 
increases as the number of epochs increases during 
network training.  

 
Figure 11: Loss plots in the ResNet50 network (right), ResNet101 

network (center), and ResNet152 network (left) for the training 
and test datasets at each epoch. 

 
Figure 12 shows the confusion matrices of these 

three networks for land cover and land use 
classification of EuroSat dataset. 

The main diagonal values of the confusion matrix 
indicate the true positive values. In the confusion 
matrices provided, the columns represent the 
predicted values while the rows represent the true 
values. These matrices can be used to calculate, 
various classification accuracy indices such as 
overall accuracy, kappa coefficient, F1 score, and 
IoU (Intersection over Union).  

Table 1 shows precision, recall, and F1 score 
indices for the ten classification classes of the 
EuroSat dataset for the ResNet50, ResNet101, and 
ResNet152 networks. 
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e The precision, recall, and F1 score metrics of the 

ResNet50 model demonstrate strong performance 
over a range of land cover and land use classes in the 
EuroSat dataset. With precision values of 0.9088 for 
rivers, 0.9640 for forests, and 0.9757 for lakes and 

seas, it effectively reduces false positives. Recall 
values for industrial areas are 0.9204, lakes and seas 
are 0.9748, and forests are notable at 0.9135. 
However, challenges are evident in the highway 
0.8270 and herbaceous vegetation 0.8046 classes.  

Figure 12: Confusion matrix of ResNet50 network (left), ResNet101 network (middle), and ResNet152 network (right) for land cover and land 
use classification in the EuroSat dataset. 

 
Table 1: Precision, Recall, and F1 score metrics for the ResNet50, ResNet101, and ResNet152 networks for the ten classification classes of the 

EuroSat dataset. 

Class  

Network  Index  
Sea and Lake  River  Residential 

area  
Permanent 

crop  
Pasture  Industrial 

area  
Highway  Herbaceous 

vegetation  
Forest  Annual 

crop  

0.9757  0.9088  0.8851  0.7276  0.8085  0.8914  0.8727  0.8584  0.9640  0.8873 ResNet50 

Precision  0.9685  0.9126  0.9404  0.7771  0.8410  0.8926  0.8732  0.8230  0.9466  0.8694  ResNet101 

0.9654  0.8437  0.9017  0.7154  0.7589  0.8763  0.7222  0.6759  0.8993  0.8382  ResNet152 

0.9748  0.8404  0.9474  0.8255  0.8539  0.9204  0.8270  0.8046  0.9135  0.8681  ResNet50 

Recall  0.9694  0.7840  0.9519  0.8045  0.8589  0.9422  0.8357  0.8511  0.9563  0.8743  ResNet101 

0.9090  0.7567  0.9208  0.5247  0.8154  0.9032  0.6894  0.8339  0.9470  0.8498  ResNet152 

0.9752  0.8733  0.9152  0.7735  0.8306  0.9056  0.8492  0.8306  0.9381  0.8776  ResNet50  

Score F1  0.9690  0.8435  0.9461  0.7906  0.8498  0.9167  0.8540  0.8369  0.9514  0.8718  ResNet101  

0.9363  0.7978  0.9111  0.6054  0.7862  0.8896  0.7054  0.7466  0.9225  0.8439  ResNet152  

 
The model's overall efficacy is highlighted by F1 

scores such as 0.9752 for lakes and seas, 0.9381 for 
forests, and 0.8733 for rivers. 

For the ResNet101 model, precision values of 
0.9685 for lakes and seas, 0.9466 for forests, and 
0.9404 for residential areas were achieved. Strong 
recall values are observed in lakes and seas 0.9694, 
forests 0.9563, and residential areas 0.9519, 
reflecting the model's accuracy. F1 scores of 0.9514 
for forests, 0.9690 for lakes and seas, and 0.9461 for 
residential areas further attest to its effectiveness. 

The ResNet152 model's evaluation on the 
EuroSat dataset results in significant precision values 
of 0.8993 for forests, 0.9017 for residential areas, and 
0.9654 for lakes and seas. Herbaceous vegetation, 
pasture, and permanent crops with lower precision 
scores present challenges. In contrast to difficulties in 
permanent crops and highways, strong recall values 
are found in forests, residential areas, and industrial 
areas. The model's effectiveness is demonstrated by 

F1 scores of 0.9225 for forests, 0.9363 for lakes and 
seas, and 0.9111 for residential areas. 

Table 2 displays kappa coefficient, overall 
accuracy, weighted F1 score and IoU indexes for 
ResNet50, ResNet101, and ResNet152 networks. 

Table 2: Kappa coefficient, Overall Accuracy, weighted F1 score, 
and weighted IoU indexes for the ResNet50, ResNet101, and 

ResNet152 networks. 

Index 
Network 

IoU Weighted F1 
score 

Kappa 
coefficient 

Overall 
accuracy 

0.7853 0.8808 0.8669 0.8804 ResNet50 

0.7951 0.8869 0.8743 0.8871 ResNet101 

0.6991 0.8213 0.8032 0.8233 ResNet152 

The results show that when using the EuroSat 
dataset for land cover and land use classification 
accuracy indices, the ResNet101 network performs 
better than both the ResNet50 and ResNet152 
networks. However, the ResNet101 network and the 
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e ResNet50 network have very similar numerical 

values for all indexes. The ResNet101 network's 
Overall Accuracy, Kappa coefficient, weighted F1 
score, and weighted IoU were, in that order, 0.8871, 
0.8743, 0.8869, and 0.7951. These index values for 
the ResNet50 network were 0.8804, 0.8669, 0.8808, 
and 0.7853, respectively. These values are very close 
to the ResNet101 index values. In addition, these 

index values were 0.8233, 0.8032, 0.8213, and 
0.6991 for the ResNet152 network, in that order. The 
classification accuracy index results obtained for the 
ResNet152 network are lower when compared to the 
ResNet101 and ResNet50 networks. 

Figure 13 demonstrates some of the predictions 
using ResNet50 model which is from test data. 

 
Figure 13: The ResNet50 sample results. 

 

 
Figure 14: The ResNet101 sample results. 
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Figure 15: The ResNet152 sample results. 

 
River, herbaceous vegetation, forest, highway, 

sea, lake and permanent crop classes were all 
correctly predicted by the ResNet50 model; however, 
the pasture class was predicted incorrectly. 

Some of the predictions made with the 
ResNet101 model based on test data are displayed in 
Figure 14. 

 Correct predictions were made for industrial 
areas, lakes, rivers, and sea, but incorrect predictions 
were made for highways and herbaceous vegetation 
in the ResNet101 model. 

Figure 15 shows some of the predictions using 
the ResNet152 model based on test data. 

The model accurately predicted the classes of 
residential, industrial, pasture, and forest areas, but 
the river class was predicted incorrectly. 

5. Conclusion 

Accurate information on land cover and land use 
plays a crucial role in environmental applications, 
infrastructure planning, and ensuring sustainable urban 
development. Nowadays, a lot of remote sensing 
imagery is available for obtaining information about 
land use and cover due to advancements in satellite 
technologies. Classification techniques must be 
applied in order to extract this data from remote 
sensing images. Deep learning techniques are widely 
used in remote sensing studies for land cover and land 
use classification because they lead to accurate 
classification results. These techniques are capable of 

modeling hierarchical characteristics, which are 
crucial for land cover and land use classification. 
Convolutional neural networks (CNNs) are common 
deep learning architectures for classifying land cover 
and land use due to their performance, efficiency, and 
accuracy. ResNet is one of the CNNs used to 
categorize land cover and land use. It uses residual 
learning techniques to improve network training for 
the determination of land cover and land use 
information. The vanishing gradient problem can be 
dealt with by ResNet models, making them an 
effective choice for classifying land use and cover. 
Since deep learning relies on data, choosing the right 
dataset for network training affects the output and 
outcomes significantly. Deep learning methods can be 
applied to the EuroSat dataset to extract information 
about land use and cover. The primary objective of 
this study is to assess the performance of the Glorot 
Uniform and Random Uniform weight initializers in 
the ResNet50, ResNet101, and ResNet152 
architectures for extracting the land cover and land use 
of the EuroSat dataset. The performance of these 
networks was then evaluated using the kappa 
coefficient, overall accuracy, weighted F1 score, and 
intersection over union (IoU). The corresponding 
outcomes of these indexes for the ResNet50 network 
were 0.8804, 0.8669, 0.8808, and 0.7853. The 
ResNet152 network's index values were 0.8233, 
0.8032, 0.8213, and 0.6991, while the ResNet101 
network's corresponding indexes were 0.8871, 0.8743, 
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e 0.8869, and 0.7951. These results demonstrate that 

numerical values for the Kappa coefficient, overall 
accuracy, weighted F1 score, and IoU do not 
significantly differ between the ResNet50 and 
ResNet101 networks. However, these two networks 

outperformed the ResNet152 network in every 
classification accuracy index. Overall, the ResNet101 
network outperformed the ResNet50 and ResNet152 
techniques in each accuracy assessment index. 
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