1. Benjdira, B., Khursheed, T., Koubaa, A., Ammar, A. and Ouni, K. (2018) "Car Detection using Unmanned Aerial Vehicles: Comparison between Faster R-CNN and YOLOv3." arXiv preprint arXiv:1812.10968. [ DOI:10.1109/UVS.2019.8658300] 2. Duarte, D., Nex, F., Kerle, N. and Vosselman, G. (2018) "Satellite Image Classification of Building Damages using Airborne and Satellite Image Samples in a Deep Learning Approach." Remote Sensing and Spatial Information Sciences, Riva del Garda, Italy, 4-7, Volume IV-2, PP. 89-96. [ DOI:10.5194/isprs-annals-IV-2-89-2018] 3. Audebert, N., Le Saux, B. and Lef'evre, S. (2017) "Segment-beforedetect: Vehicle detection and classification through semantic segmentation of aerial images." Remote Sens., vol. 9, no. 4, PP. 368. [ DOI:10.3390/rs9040368] 4. Yu, Y., Gu, T., Guan, H., Li, D. and S. Jin, (2019) "Vehicle detection from high-resolution remote sensing imagery using convolutional capsule networks." IEEE Geosci. Remote Sens. Lett., vol. 16, no. 12, PP. 1894-1898. [ DOI:10.1109/LGRS.2019.2912582] 5. Mattyus, G., Wang, S., Fidler, S. and Urtasun, R. (2015) "Enhancing roads maps by parsing aerial images around the world." In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7-13 December 2015; PP. 1689-1697. [ DOI:10.1109/ICCV.2015.197] 6. Chen, G., Wang, H., Chen, K., Li, Z., Song, Z., Liu, Y., Chen, W. and Knoll, A. (2020) "A survey of the four pillars for small object detection: Multiscale representation, contextual information, super-resolution, and region proposal." IEEE Transactions on Systems, Man, and Cybernetics: Systems. 7. Girshick, R., Donahue, J., Darrell, T., Malik, J. and Malik, J. (2014) "Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation." In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23-28; PP. 580-587. [ DOI:10.1109/CVPR.2014.81] 8. Ren, S., He, K., Girshick, R.B. and Sun, J. (2015) "Faster R-CNN: towards real-time object detection with region proposal networks." corr abs/1506.01497, arXiv preprint arXiv:1506.01497. 9. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, Y. and Berg, A. C. (2016) "SSD: Single shot multibox detector." in European conference on computer vision. Springer, PP. 21-37. [ DOI:10.1007/978-3-319-46448-0_2] 10. Redmon, S., Divvala, R., Girshick, A. and Farhadi, A. (2016) "You only look once: Unified, real-time object detection," in Proceedings of the IEEE conference on computer vision and pattern recognition, PP. 779-788. [ DOI:10.1109/CVPR.2016.91] 11. Lin, T.Y., Goyal, P., Girshick, R., He, K. and Doll'ar, P. (2017) "Focal loss for dense object detection," in Proceedings of the IEEE international conference on computer vision, PP. 2980-2988. [ DOI:10.1109/ICCV.2017.324] 12. Yang, M.Y., Liao, W., LI, X. and Rosenhahn, B. (2018) "Deep learning for vehicle detection in aerial images." In: Proceedings of the IEEE International Conference on Image Processing (ICIP). PP. 3079-3083. [ DOI:10.1109/ICIP.2018.8451454] 13. Douillard, A. (2020) "Detecting Cars from Aerial Imagery for the NATO Innovation Challenge." Available online: https://arthurdouillard.com/post/nato-challenge/. 14. Stuparu, D.G., Ciobanu, R.I. and Dobre, C. (2020) "Vehicle Detection in Overhead Satellite Images Using a One-Stage Object Detection Model." Sensors, 20, 6485. [ DOI:10.3390/s20226485] 15. Van Etten, A. (2019) "Satellite imagery multiscale rapid detection with windowed networks." In Proceedings of the 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa Village, HI, USA, 7-11, PP. 735-743. [ DOI:10.1109/WACV.2019.00083] 16. He, K., Zhang, X., Ren, S. and Sun, J. (2015) "Deep residual learning for image recognition." arXiv preprint arXiv:1512.03385, 2016. [ DOI:10.1109/CVPR.2016.90] 17. Lin, T.Y., Doll'ar, P., Girshick, R., He, K., Hariharan, B. and Belongie, S. (2017) "Feature pyramid networks for object detection." in Proceedings of the IEEE conference on computer vision and pattern recognition, PP. 2117-2125. [ DOI:10.1109/CVPR.2017.106] 18. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Doll'ar P. and Zitnick, C.L. (2014) "Microsoft coco: Common objects in context", In European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, pp. 740-755. [ DOI:10.1007/978-3-319-10602-1_48] 19. Ren, S., He, K., Girshick, R. and Sun, J. (2017) "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks." IEEE Transactions on Pattern Analysis and Machine Intelligence, 39, 1137-1149. [ DOI:10.1109/TPAMI.2016.2577031] 20. Mansour, A., Hassan, A., Hussein, W. and Said, E. (2019) "Automated vehicle detection in satellite images using deep learning", 18th International Conference on Aerospace Sciences & Aviation Technology, 610(1):012027. doi:10.1088/1757-899X/610/1/012027 [ DOI:10.1088/1757-899X/610/1/012027]
|