1. Awodey, S., Category theory. 2010: Oxford university press. 2. Usery, E.L., Category theory and the structure of features in geographic information systems. Cartography and Geographic information systems, 1993. 20(1): p. 5-12. [ DOI:10.1559/152304093782616751] 3. Fokkinga, M.M., Calculate categorically! Formal Aspects of Computing, 1992. 4: p. 673-692. [ DOI:10.1007/BF03180568] 4. Rydeheard, D.E. and R.M. Burstall, Computational category theory. Vol. 152. 1988: Prentice Hall Englewood Cliffs. 5. Leinster, T., Basic category theory. Vol. 143. 2014: Cambridge University Press. [ DOI:10.1017/CBO9781107360068] 6. Johnstone, P.T., Topos theory. 2014: Courier Corporation. 7. MacLane, S. and I. Moerdijk, Sheaves in geometry and logic: A first introduction to topos theory. 2012: Springer Science & Business Media. 8. Rousseau, C. Topos theory and complex analysis. in Applications of Sheaves: Proceedings of the Research Symposium on Applications of Sheaf Theory to Logic, Algebra, and Analysis, Durham, July 9-21, 1977. 2006. Springer. 9. Caramello, O. The unification of mathematics via topos theory. in Logic in Question: Talks from the Annual Sorbonne Logic Workshop (2011-2019). 2023. Springer. [ DOI:10.1007/978-3-030-94452-0_30] 10. Lemin, A.J. Spectral decomposition of ultrametric spaces and topos theory. in Topology Proc. 2002. [ DOI:10.1007/978-1-4612-1370-3_13] 11. McLarty, C., The uses and abuses of the history of topos theory. The British Journal for the Philosophy of Science, 1990. 41(3): p. 351-375. [ DOI:10.1093/bjps/41.3.351] 12. Corcoran, P. and C.B. Jones, Topological data analysis for geographical information science using persistent homology. International Journal of Geographical Information Science, 2023. 37(3): p. 712-745. [ DOI:10.1080/13658816.2022.2155654] 13. Bouchaffra, D., et al. Land Cover Change Detection based on Homology Theory. in 2019 6th International Conference on Image and Signal Processing and their Applications (ISPA). 2019. IEEE. [ DOI:10.1109/ISPA48434.2019.8966911] 14. Pereira, C.M. and R.F. de Mello, Persistent homology for time series and spatial data clustering. Expert Systems with Applications, 2015. 42(15-16): p. 6026-6038. [ DOI:10.1016/j.eswa.2015.04.010] 15. Xing, J., et al., A spatiotemporal brain network analysis of alzheimer's disease based on persistent homology. Frontiers in aging neuroscience, 2022. 14: p. 788571. [ DOI:10.3389/fnagi.2022.788571] 16. Hu, L. and J. Wang. Geo-ontology integration based on category theory. in 2010 International Conference On Computer Design and Applications. 2010. IEEE.
|