1. Wang, J., Zheng, T., Lei, P., and Bai, X. (2019). "A Hierarchical Convolution Neural Network (CNN)-Based Ship Target Detection Method in Spaceborne SAR Imagery." Remote Sensing. 11, 6, PP. 620. [ DOI:10.3390/rs11060620] 2. Jin, Y., Chen, Z., Fan, L., and Zhao, C. (2015). "Spectral Kurtosis-Based Method for Weak Target Detection in Sea Clutter by Microwave Coherent Radar." Journal of Atmospheric and Oceanic Technology. 32, 2, PP. 310-317. [ DOI:10.1175/JTECH-D-13-00108.1] 3. Evans, D.L., Farr, T.G., van Zyl, J.J., and Zebker, H.A. (1988). "Radar polarimetry: analysis tools and applications." IEEE Transactions on Geoscience and Remote Sensing. 26, 6, PP. [ DOI:10.1109/36.7709] 4. Zhai, Y., Deng, W., Xu, Y., Ke, Q., Gan, J., Sun, B., Zeng, J., and Piuri, V. (2019). "Robust SAR Automatic Target Recognition Based on Transferred MS-CNN with L 2-Regularization." Computational Intelligence and Neuroscience. 2019, PP. 9140167. [ DOI:10.1155/2019/9140167] 5. Zhang, Y., Du, B., and Zhang, L. (2015). "A Sparse Representation-Based Binary Hypothesis Model for Target Detection in Hyperspectral Images." IEEE Transactions on Geoscience and Remote Sensing. 53, 3, PP. 1346-1354. [ DOI:10.1109/TGRS.2014.2337883] 6. Sun, X., Qu, Y., Gao, L., Sun, X., Qi, H., Zhang, B., and Shen, T. (2021). "Target Detection Through Tree-Structured Encoding for Hyperspectral Images." IEEE Transactions on Geoscience and Remote Sensing. 59, 5, PP. 4233-4249. [ DOI:10.1109/TGRS.2020.3024852] 7. Yilu, M., Li, Y., and Zhu, L. (2019). "Land Cover Classification for Polarimetric SAR Image Using Convolutional Neural Network and Superpixel." Progress In Electromagnetics Research. 83, PP. [ DOI:10.2528/PIERB18112104] 8. Gakhar, S. and Tiwari, K.C. (2021). "Comparative Assessment of Target-Detection Algorithms for Urban Targets Using Hyperspectral Data." Photogrammetric Engineering & Remote Sensing. 87, 5, PP. 349-362. [ DOI:10.14358/PERS.87.5.349] 9. Vincent, F. and Besson, O. (2021). "Robust adaptive target detection in hyperspectral imaging." Signal Processing. 181, PP. 107905. [ DOI:10.1016/j.sigpro.2020.107905] 10. Zhang, Y., Du, B., Zhang, Y., and Zhang, L. (2017). "Spatially Adaptive Sparse Representation for Target Detection in Hyperspectral Images." IEEE Geoscience and Remote Sensing Letters. 14, 11, PP. 1923-1927. [ DOI:10.1109/LGRS.2017.2732454] 11. Gara, T.W., Mpakairi, K.S., Nampira, T.C., Oduro Appiah, J., Muumbe, T.P., and Dube, T. (2023). "Integrating RADAR and optical imagery improve the modelling of carbon stocks in a mopane-dominated African savannah dry forest." African Journal of Ecology. 61, 2, PP. 320-329. [ DOI:10.1111/aje.13114] 12. Bijeesh, T.V. and Narasimhamurthy, K.N. (2020). "Surface water detection and delineation using remote sensing images: a review of methods and algorithms." Sustainable Water Resources Management. 6, 4, PP. 68. [ DOI:10.1007/s40899-020-00425-4] 13. Safari, A. and Sohrabi, H. (2020). "Integration of synthetic aperture radar and multispectral data for aboveground biomass retrieval in Zagros oak forests, Iran: an attempt on Sentinel imagery." International Journal of Remote Sensing. 41, 20, PP. 8069-8095. [ DOI:10.1080/01431161.2020.1771789] 14. Schumann, G., Giustarini, L., Tarpanelli, A., Jarihani, B., and Martinis, S. (2023). "Flood Modeling and Prediction Using Earth Observation Data." Surveys in Geophysics. 44, 5, PP. 1553-1578. [ DOI:10.1007/s10712-022-09751-y] 15. Jafarzadeh, H., Mahdianpari, M., Gill, E.W., Brisco, B., and Mohammadimanesh, F. (2022). "Remote Sensing and Machine Learning Tools to Support Wetland Monitoring: A Meta-Analysis of Three Decades of Research." Remote Sensing. 14, 23, PP. 6104. [ DOI:10.3390/rs14236104] 16. Dong, J., Dafang, Z., and Yaohuan, H., Investigation of Image Fusion for Remote Sensing Application, in New Advances in Image Fusion, M. Qiguang, Editor. 2013, IntechOpen: Rijeka. p. Ch. 1.
|