[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 13, Issue 2 (12-2023) ::
JGST 2023, 13(2): 67-77 Back to browse issues page
Fast white noise estimation in GNSS time series by wavelet variance
Khosro Moghtased Azar * , Ramin Tehranchi
Abstract:   (894 Views)
The noise in the GNSS position time series is mainly a combination of white noise and power law noise. Noise amplitudes are estimated using variance component estimation (VCE) procedures. These methods require repeated inversion of covariance matrix, which is a computational burden for analysis of long time series. This work proposes an algorithm to estimate the white noise amplitude, through the estimation of wavelet variance based upon the Maximal Overlap Discrete Wavelet Transform (MODWT). MODWT can be used for any sample size and number of wavelet and scaling coefficients does not decrease by factor 2 for each increase in the level of the transform, so it does not decrease our ability to perform statistical analysis. To test the performance of the proposed algorithm, we used 180 synthetic daily time series with different lengths (2000, 4000 and 8000) emulating real GNSS time series. They composed of linear trends, periodic signals, offsets, transient displacements, gaps (up to 10%), and a combination of white, flicker, and random walk noises. The results of proposed method were compared to those of REstricted Maximum Likelihood (REML) approach. Biases of white noise amplitudes for the proposed and REML method indicated that results given by the two methods are in good agreement. Moreover, the proposed algorithm has computational complexity of order O(N) where N is the number of observations. Also, the results demonstrated that this proposed algorithm can be about 450-10000 times faster than REML method depending on the length of time series.  For further evaluation of the method, the time series of 19 real stations were used, and the results indicated the effectiveness of the proposed method. The low complexity of the proposed algorithm can considerably speed up the processing of GNSS time series.
Article number: 6
Keywords: GNSS time series, white noise, power law noise, Variance Component Estimation (VCE), Wavelet Variance (WV), Maximal Overlap Discrete Wavelet Transform (MODWT)
Full-Text [PDF 691 kb]   (244 Downloads)    
Type of Study: Research | Subject: Geo&Hydro
Received: 2023/06/29
References
1. Wernicke, B., Davis, J. L., Bennett, R. A., Normandeau, J. E., Friedrich, A. M., & Niemi, N. A. (2004). Tectonic implications of a dense continuous GPS velocity field at Yucca Mountain, Nevada. Journal of Geophysical Research: Solid Earth, 109(B12). [DOI:10.1029/2003JB002832]
2. Aoki, Y. (2017). Space geodetic tools provide early warnings for earthquakes and volcanic eruptions. Journal of Geophysical Research: Solid Earth, 122(4), 3241-3244. [DOI:10.1002/2017JB014287]
3. Tregoning, P., & Watson, C. (2009). Atmospheric effects and spurious signals in GPS analyses. Journal of Geophysical Research: Solid Earth, 114(B9). [DOI:10.1029/2009JB006344]
4. Montillet, J. P., Melbourne, T. I., & Szeliga, W. M. (2018). GPS vertical land motion corrections to sea‐level rise estimates in the Pacific Northwest. Journal of Geophysical Research: Oceans, 123(2), 1196-1212. [DOI:10.1002/2017JC013257]
5. Argus, D. F., Peltier, W. R., Drummond, R., & Moore, A. W. (2014). The Antarctica component of postglacial rebound model ICE-6G_C (VM5a) based on GPS positioning, exposure age dating of ice thicknesses, and relative sea level histories. Geophysical Journal International, 198(1), 537-563. [DOI:10.1093/gji/ggu140]
6. Bock, Y., & Melgar, D. (2016). Physical applications of GPS geodesy: A review. Reports on Progress in Physics, 79(10), 106801. [DOI:10.1088/0034-4885/79/10/106801]
7. Herring, T.A., Melbourne, T.I., Murray, M.H., Floyd, M.A., Szeliga, W.M., King, R.W., Phillips, D.A., Puskas, C.M., Santillan, M. & Wang, L., (2016). Plate Boundary Observatory and related networks: GPS data analysis methods and geodetic products. Reviews of Geophysics, 54(4), 759-808. [DOI:10.1002/2016RG000529]
8. Tehranchi, R., Moghtased‐Azar, K., & Safari, A. (2020). A new statistical test based on the WR for detecting offsets in GPS experiment. Earth and Space Science, 7(8), e2019EA000810. [DOI:10.1029/2019EA000810]
9. Khazraei, S. M., & Amiri-Simkooei, A. R. (2021). Improving offset detection algorithm of GNSS position time-series using spline function theory. Geophysical Journal International, 224(1), 257-270. [DOI:10.1093/gji/ggaa453]
10. Nikolaidis, R. (2002). Observation of geodetic and seismic deformation with the Global Positioning System. PH. D. thesis , University of California, San Diego.
11. Bevis, M., & Brown, A. (2014). Trajectory models and reference frames for crustal motion geodesy. Journal of Geodesy, 88, 283-311. [DOI:10.1007/s00190-013-0685-5]
12. Tehranchi, R., Moghtased Azar, K., & Nankali, H. R. (2016). Analysis of GPS Time Series Over the Alborz Range. Journal of Geomatics Science and Technology, 5(4), 127-135.
13. Williams, S. D. (2008). CATS: GPS coordinate time series analysis software. GPS solutions, 12, 147-153. [DOI:10.1007/s10291-007-0086-4]
14. Bos, M. S., Fernandes, R. M. S., Williams, S. D. P., & Bastos, L. (2008). Fast error analysis of continuous GPS observations. Journal of Geodesy, 82(3), 157-166. [DOI:10.1007/s00190-007-0165-x]
15. Langbein, J. (2017). Improved efficiency of maximum likelihood analysis of time series with temporally correlated errors. Journal of Geodesy, 91, 985-994. [DOI:10.1007/s00190-017-1002-5]
16. Koch, K. R. (1986). Maximum likelihood estimate of variance components: Ideas by AJ Pope (In memory of Allen J. Pope, 11.10. 1939-29.08. 1985). Bulletin gæodésique, 60, 329-338. [DOI:10.1007/BF02522340]
17. Amiri-Simkooei, A. (2007). Least-squares variance component estimation: theory and GPS applications. PH. D. thesis, Delft University of Technology. [DOI:10.54419/fz6c1c]
18. Teunissen, P. J., & Amiri-Simkooei, A. R. (2008). Least-squares variance component estimation. Journal of geodesy, 82, 65-82. [DOI:10.1007/s00190-007-0157-x]
19. Langbein, J. (2012). Estimating rate uncertainty with maximum likelihood: differences between power-law and flicker-random-walk models. Journal of Geodesy, 86(9), 775-783. [DOI:10.1007/s00190-012-0556-5]
20. Santamaría‐Gómez, A., Bouin, M. N., Collilieux, X., & Wöppelmann, G. (2011). Correlated errors in GPS position time series: Implications for velocity estimates. Journal of Geophysical Research: Solid Earth, 116(B1). [DOI:10.1029/2010JB007701]
21. Amiri‐Simkooei, A. R., Tiberius, C. C., & Teunissen, P. J. (2007). Assessment of noise in GPS coordinate time series: methodology and results. Journal of Geophysical Research: Solid Earth, 112(B7). [DOI:10.1029/2006JB004913]
22. Bos, M. S., Fernandes, R. M. S., Williams, S. D. P., & Bastos, L. (2013). Fast error analysis of continuous GNSS observations with missing data. Journal of Geodesy, 87(4), 351-360. [DOI:10.1007/s00190-012-0605-0]
23. He, X., Bos, M. S., Montillet, J. P., & Fernandes, R. M. S. (2019). Investigation of the noise properties at low frequencies in long GNSS time series. Journal of Geodesy, 93(9), 1271-1282. [DOI:10.1007/s00190-019-01244-y]
24. Dmitrieva, K., Segall, P., & DeMets, C. (2015). Network-based estimation of time-dependent noise in GPS position time series. Journal of Geodesy, 89(6), 591-606. [DOI:10.1007/s00190-015-0801-9]
25. Langbein, J., & Svarc, J. L. (2019). Evaluation of temporally correlated noise in Global Navigation Satellite System time series: Geodetic monument performance. Journal of Geophysical Research: Solid Earth, 124(1), 925-942. [DOI:10.1029/2018JB016783]
26. Langbein, J. (2008). Noise in GPS displacement measurements from Southern California and Southern Nevada. Journal of Geophysical Research: Solid Earth, 113(B5). [DOI:10.1029/2007JB005247]
27. King, M. A., & Williams, S. D. (2009). Apparent stability of GPS monumentation from short‐baseline time series. Journal of Geophysical Research: Solid Earth, 114(B10). [DOI:10.1029/2009JB006319]
28. Williams, S.D., Bock, Y., Fang, P., Jamason, P., Nikolaidis, R.M., Prawirodirdjo, L., Miller, M. & Johnson, D.J. (2004). Error analysis of continuous GPS position time series. Journal of Geophysical Research: Solid Earth, 109(B3). [DOI:10.1029/2003JB002741]
29. Montillet, J. P., Tregoning, P., McClusky, S., & Yu, K. (2012). Extracting white noise statistics in GPS coordinate time series. IEEE Geoscience and Remote Sensing Letters, 10(3), 563-567. [DOI:10.1109/LGRS.2012.2213576]
30. Montillet, J. P., & Bos, M. S. (Eds.). (2019). Geodetic time series analysis in earth sciences. Springer. [DOI:10.1007/978-3-030-21718-1]
31. Tehranchi, R., Moghtased-Azar, K., & Safari, A. (2021). Fast approximation algorithm to noise components estimation in long-term GPS coordinate time series. Journal of Geodesy, 95(2), 18. [DOI:10.1007/s00190-021-01473-0]
32. Ghorbanalizadeh Khangah, M., Tehranchi, R., & Moghtased Azar, K. (2021). Noise Analysis of GPS Time Series with Simulated Data Using EMD, Standard Deviation and Trigonometric Methods. Journal of Geomatics Science and Technology, 11(1), 91-106.
33. Cucci, D. A., Voirol, L., Kermarrec, G., Montillet, J. P., & Guerrier, S. (2023). The Generalized Method of Wavelet Moments with eXogenous inputs: a fast approach for the analysis of GNSS position time series. Journal of Geodesy, 97(2), 14. [DOI:10.1007/s00190-023-01702-8]
34. Williams, S. D. P. (2003). The effect of coloured noise on the uncertainties of rates estimated from geodetic time series. Journal of Geodesy, 76, 483-494. [DOI:10.1007/s00190-002-0283-4]
35. Hosking, J. R. M. (1981), Fractional differencing, Biometrika, 68, 165-176. [DOI:10.1093/biomet/68.1.165]
36. Percival, D. B., & Walden, A. T. (2000). Wavelet methods for time series analysis (Vol. 4). Cambridge university press. [DOI:10.1017/CBO9780511841040]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Moghtased Azar K, Tehranchi R. Fast white noise estimation in GNSS time series by wavelet variance. JGST 2023; 13 (2) : 6
URL: http://jgst.issgeac.ir/article-1-1149-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 13, Issue 2 (12-2023) Back to browse issues page
نشریه علمی علوم و فنون نقشه برداری Journal of Geomatics Science and Technology