[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Contact us::
Site Facilities::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
:: Volume 13, Issue 2 (12-2023) ::
JGST 2023, 13(2): 79-94 Back to browse issues page
Landslide susceptibility mapping using statistical and machine learning models (case study: Austria)
Meysam Moharrami , Mohammadreza Jelokhani-Niaraki *
Abstract:   (878 Views)
Landslides are a common natural hazard around the world, but the accuracy of the maps produced can be impacted by various adverse effects and uncertainties. Researchers have continuously sought to improve the accuracy of landslide susceptibility maps. This study aims to create a landslide susceptibility map for Austria using t-test and random forest models. Nine criteria for landslide occurrence, including elevation, slope, aspect, distance to drainages, distance to faults, distance to roads, land cover, lithology, and precipitation, were used. In the t-test model, the weight of each criterion was calculated using the t-statistical test and then combined with each other using the Simple Additive Weighting technique to draw the final landslide susceptibility map. The random forest model was trained using multiple decision trees and based on the landslide occurrence points and criterion layers, the relative weight of each layer was calculated, resulting in the final landslide susceptibility map. The receiver operating characteristic (ROC) curve and area under the ROC curve (AUC) were used to compare the two models, with the results showing that the random forest model performed better with an AUC of 0.893, compared to the t-test model with an AUC of 0.852. The importance of different criteria was assessed, and it was found that slope and precipitation were the most important factors in the occurrence of landslides in both models. The results showed that both models have unique advantages in landslide susceptibility mapping. Accordingly, the higher accuracy of the random forest model, and the possibility of weighting the criteria and sub-criteria in the t-test model, make both models practical in this field.

Article number: 7
Keywords: T-Test, Random Forest, Landslide, Modelling, Machine Learning.
Full-Text [PDF 1038 kb]   (261 Downloads)    
Type of Study: Research | Subject: GIS
Received: 2023/07/3
References
1. Gheshlaghi, H. A., and Feizizadeh, B. (2017). "An integrated approach of analytical network process and fuzzy based spatial decision-making systems applied to landslide risk mapping." Journal of African Earth Sciences. Vol. 133, PP. 15-24. [DOI:10.1016/j.jafrearsci.2017.05.007]
2. Yang, J., Song, C., Yang, Y., Xu, C., Guo, F., and Xie, L. (2019). "New method for landslide susceptibility mapping supported by spatial logistic regression and GeoDetector: A case study of Duwen Highway Basin, Sichuan Province, China." Geomorphology. Vol. 324, PP. 62-71. [DOI:10.1016/j.geomorph.2018.09.019]
3. Zhou, X., Wen, H., Zhang, Y., Xu, J., and Zhang, W. (2021). "Landslide susceptibility mapping using hybrid random forest with GeoDetector and RFE for factor optimization." Geoscience Frontiers. Vol. 12, No. 5, PP. 101211-101225. [DOI:10.1016/j.gsf.2021.101211]
4. Hu, Q., Zhou, Y., Wang, S., and Wang, F. (2020). "Machine learning and fractal theory models for landslide susceptibility mapping: Case study from the Jinsha River Basin." Geomorphology. Vol. 351, PP. 106975-106989. [DOI:10.1016/j.geomorph.2019.106975]
5. Abdo, H. G. (2022). "Assessment of landslide susceptibility zonation using frequency ratio and statistical index: a case study of Al-Fawar basin, Tartous, Syria." International Journal of Environmental Science and Technology. Vol. 19, No. 4, PP. 2599-2618. [DOI:10.1007/s13762-021-03322-1]
6. Froude, M. J., and Petley, D. (2018). "Global fatal landslide occurrence from 2004 to 2016." Natural Hazards and Earth System Sciences. Vol. 18, PP. 2161-2181. [DOI:10.5194/nhess-18-2161-2018]
7. Zhang, W., Liu, S., Wang, L., Samui, P., Chwała, M., and He, Y. (2022). "Landslide susceptibility research combining qualitative analysis and quantitative evaluation: A case study of Yunyang County in Chongqing, China." Forests. Vol. 13, No. 7, PP. 1055-1068. [DOI:10.3390/f13071055]
8. Guzzetti, F., Reichenbach, P., Cardinali, M., Galli, M., and Ardizzone, F. (2005). "Probabilistic landslide hazard assessment at the basin scale." Geomorphology. Vol. 72, No. 4, PP. 272-299. [DOI:10.1016/j.geomorph.2005.06.002]
9. Hong, H., Naghibi, S. A., Pourghasemi, H. R., and Pradhan, B. (2016). "GIS-based landslide spatial modeling in Ganzhou City, China." Arabian Journal of Geosciences. Vol. 9, No. 2, PP. 112-123. [DOI:10.1007/s12517-015-2094-y]
10. Martino, S., Fiorucci, M., Marmoni, G. M., Casaburi, L., Antonielli, B., and Mazzanti, P. (2022). "Increase in landslide activity after a low-magnitude earthquake as inferred from DInSAR interferometry." Scientific reports. Vol. 12, No. 1, PP. 1-19. [DOI:10.1038/s41598-022-06508-w]
11. Rafiei Sardooi, E., Azareh, A., Mesbahzadeh, T., Soleimani Sardoo, F., Parteli, E. J., and Pradhan, B. (2021). "A hybrid model using data mining and multi-criteria decision-making methods for landslide risk mapping at Golestan Province, Iran." Environmental Earth Sciences. Vol. 80, No. 15, PP. 1-25. [DOI:10.21203/rs.3.rs-190817/v1]
12. Kilicoglu, C., Cetin, M., Aricak, B., and Sevik, H. (2020). "Site selection by using the multi-criteria technique-a case study of Bafra, Turkey." Environmental monitoring and assessment. Vol. 192, No. 9, PP. 1-12. [DOI:10.1007/s10661-020-08562-1]
13. Nohani, E., Moharrami, M., Sharafi, S., Khosravi, K., Pradhan, B., Pham, B. T., M Melesse, A. (2019). "Landslide susceptibility mapping using different GIS-based bivariate models." Water. Vol. 11, No. 7, PP. 1402-1420. [DOI:10.3390/w11071402]
14. Fayaz, M., Meraj, G., Khader, S. A., Farooq, M., Kanga, S., Singh, S. K., and Sahu, N. (2022). "Management of landslides in a rural-urban transition zone using machine learning algorithms-A case study of a National Highway (NH-44), India, in the Rugged Himalayan Terrains." Land. Vol. 11, No. 6, PP. 884-898. [DOI:10.3390/land11060884]
15. Chen, W., Zhang, S., Li, R., and Shahabi, H. (2018). "Performance evaluation of the GIS-based data mining techniques of best-first decision tree, random forest, and naïve Bayes tree for landslide susceptibility modeling." Science of the total environment. Vol. 644, PP. 1006-1018. [DOI:10.1016/j.scitotenv.2018.06.389]
16. Reichenbach, P., Rossi, M., Malamud, B. D., Mihir, M., and Guzzetti, F. (2018). "A review of statistically-based landslide susceptibility models." Earth-Science Reviews. Vol. 180, PP. 60-91. [DOI:10.1016/j.earscirev.2018.03.001]
17. Veronesi, F., Schito, J., Grassi, S., and Raubal, M. (2017). "Automatic selection of weights for GIS-based multicriteria decision analysis: site selection of transmission towers as a case study." Applied Geography. Vol. 83, PP. 78-85. [DOI:10.1016/j.apgeog.2017.04.001]
18. Huabin, W., Gangjun, L., Weiya, X., and Gonghui, W. (2005). "GIS-based landslide hazard assessment: an overview." Progress in Physical geography. Vol. 29, No. 4, PP. 548-567. [DOI:10.1191/0309133305pp462ra]
19. Wubalem, A. (2021). "Landslide susceptibility mapping using statistical methods in Uatzau catchment area, northwestern Ethiopia." Geoenvironmental Disasters. Vol. 8, No. 1, PP. 1-21. [DOI:10.1186/s40677-020-00170-y]
20. Lary, D. J., Alavi, A. H., Gandomi, A. H., and Walker, A. L. (2016). "Machine learning in geosciences and remote sensing." Geoscience Frontiers. Vol. 7, No. 1, PP. 3-10. [DOI:10.1016/j.gsf.2015.07.003]
21. Lv, L., Chen, T., Dou, J., and Plaza, A. (2022). "A hybrid ensemble-based deep-learning framework for landslide susceptibility mapping." International Journal of Applied Earth Observation and Geoinformation. Vol. 108, PP. 102713-102722. [DOI:10.1016/j.jag.2022.102713]
22. Merghadi, A., Yunus, A. P., Dou, J., Whiteley, J., ThaiPham, B., Bui, D. T., and Abderrahmane, B. (2020). "Machine learning methods for landslide susceptibility studies: A comparative overview of algorithm performance." Earth-Science Reviews. Vol. 207, PP. 103225-103239. [DOI:10.1016/j.earscirev.2020.103225]
23. Abeysiriwardana, H. D., and Gomes, P. I. (2022). "Integrating vegetation indices and geo-environmental factors in GIS-based landslide-susceptibility mapping: using logistic regression." Journal of Mountain Science. Vol. 19, No. 2, PP. 477-492. [DOI:10.1007/s11629-021-6988-8]
24. Chen, W., Xie, X., Peng, J., Shahabi, H., Hong, H., Bui, D. T., and Zhu, A. X. (2018). "GIS-based landslide susceptibility evaluation using a novel hybrid integration approach of bivariate statistical based random forest method." Catena. Vol. 164, PP. 135-149. [DOI:10.1016/j.catena.2018.01.012]
25. Huang, W., Ding, M., Li, Z., Zhuang, J., Yang, J., Li, X., and Dong, Y. (2022). "An Efficient User-Friendly Integration Tool for Landslide Susceptibility Mapping Based on Support Vector Machines: SVM-LSM Toolbox." Remote Sensing. Vol. 14, No. 14, PP. 3408-3422. [DOI:10.3390/rs14143408]
26. Bravo-López, E., Fernández Del Castillo, T., Sellers, C., and Delgado-García, J. (2022). "Landslide Susceptibility Mapping of Landslides with Artificial Neural Networks: Multi-Approach Analysis of Backpropagation Algorithm Applying the Neuralnet Package in Cuenca, Ecuador." Remote Sensing. Vol. 14, No. 14, PP. 3495-3510. [DOI:10.3390/rs14143495]
27. Kavzoglu, T., and Teke, A. (2022). "Predictive Performances of ensemble machine learning algorithms in landslide susceptibility mapping using random forest, extreme gradient boosting (XGBoost) and natural gradient boosting (NGBoost)." Arabian Journal for Science and Engineering. Vol. 15, No. 2, PP. 1-19. [DOI:10.1007/s13369-022-06560-8]
28. Gudiyangada Nachappa, T., Tavakkoli Piralilou, S., Ghorbanzadeh, O., Shahabi, H., and Blaschke, T. (2019). "Landslide Susceptibility Mapping for Austria Using Geons and Optimization with the Dempster-Shafer Theory." Applied Sciences. Vol. 9, No. 24, PP. 5393-5410. [DOI:10.3390/app9245393]
29. Petschko, H., Brenning, A., Bell, R., Goetz, J., and Glade, T. (2014). "Assessing the quality of landslide susceptibility maps--case study Lower Austria." Natural Hazards & Earth System Sciences. Vol. 14, No. 1, PP. 30-46. [DOI:10.5194/nhess-14-95-2014]
30. Bacha, A. S., Shafique, M., van der Werff, H., van der Meijde, M., Hussain, M. L., and Wahid, S. (2022). "Spatio-temporal landslide inventory and susceptibility assessment using Sentinel-2 in the Himalayan mountainous region of Pakistan." Environmental monitoring and assessment. Vol. 194, No. 11, PP. 1-17. [DOI:10.1007/s10661-022-10514-w]
31. Dai, C., Li, W., Wang, D., Lu, H., Xu, Q., and Jian, J. (2021). "Active landslide detection based on Sentinel-1 data and InSAR technology in Zhouqu county, Gansu province, Northwest China." Journal of Earth Science. Vol. 32, No. 5, PP. 1092-1103. [DOI:10.1007/s12583-020-1380-0]
32. Anshori, R. M., Samodra, G., Mardiatno, D., and Sartohadi, J. (2022). "Volunteered geographic information mobile application for participatory landslide inventory mapping." Computers & Geosciences. Vol. 161, PP. 105073-105092. [DOI:10.1016/j.cageo.2022.105073]
33. Pourghasemi, H. R., and Rahmati, O. (2018). "Prediction of the landslide susceptibility: Which algorithm, which precision." Catena. Vol. 162, PP. 177-192. [DOI:10.1016/j.catena.2017.11.022]
34. Gameiro, S., Riffel, E. S., de Oliveira, G. G., and Guasselli, L. A. (2021). "Artificial neural networks applied to landslide susceptibility: The effect of sampling areas on model capacity for generalization and extrapolation." Applied Geography. Vol. 137, PP. 102598-102616. [DOI:10.1016/j.apgeog.2021.102598]
35. Kavzoglu, T., Sahin, E. K., and Colkesen, I. (2014). "Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression." Landslides. Vol. 11, No. 3, PP. 425-439. [DOI:10.1007/s10346-013-0391-7]
36. Ayalew, L., and Yamagishi, H. (2005). "The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan." Geomorphology. Vol. 65, No. 2, PP. 15-31. [DOI:10.1016/j.geomorph.2004.06.010]
37. Lima, P., Steger, S., Glade, T., Tilch, N., Schwarz, L., and Kociu, A. (2017, May). "Landslide susceptibility mapping at national scale: a first attempt for Austria." In Workshop on World Landslide Forum Springer Cham. PP. 943-951. [DOI:10.1007/978-3-319-53498-5_107]
38. Steger, S., Brenning, A., Bell, R., Petschko, H., and Glade, T. (2016). "Exploring discrepancies between quantitative validation results and the geomorphic plausibility of statistical landslide susceptibility maps." Geomorphology. Vol. 262, PP. 8-23. [DOI:10.1016/j.geomorph.2016.03.015]
39. Lucchese, L. V., de Oliveira, G. G., and Pedrollo, O. C. (2021). "Mamdani fuzzy inference systems and artificial neural networks for landslide susceptibility mapping." Natural Hazards. Vol. 106, No. 3, PP. 2381-2405. [DOI:10.1007/s11069-021-04547-6]
40. Ghorbanzadeh, O., Blaschke, T., Gholamnia, K., Meena, S. R., Tiede, D., and Aryal, J. (2019). "Evaluation of different machine learning methods and deep-learning convolutional neural networks for landslide detection." Remote Sensing. Vol. 11, No. 2, PP. 196-212. [DOI:10.3390/rs11020196]
41. Eitvandi, N., Sarikhani, R., and Derikvand, S. (2022). "Landslide susceptibility mapping by integrating analytical hierarchy process, frequency ratio, and fuzzy gamma operator models, case study: North of Lorestan Province, Iran." Environmental monitoring and assessment. Vol. 194, No. 9, PP. 1-26. [DOI:10.1007/s10661-022-10206-5]
42. Pham, B. T., Bui, D. T., and Prakash, I. (2018). "Application of classification and regression trees for spatial prediction of rainfall-induced shallow landslides in the Uttarakhand area (India) using GIS." Climate change, extreme events and disaster risk reduction Springer Cham. PP. 159-170. [DOI:10.1007/978-3-319-56469-2_11]
43. Chanu, M. L., and Bakimchandra, O. (2022). "Landslide susceptibility assessment using AHP model and multi resolution DEMs along a highway in Manipur, India." Environmental Earth Sciences. Vol. 81, No. 5, PP. 1-11. [DOI:10.1007/s12665-022-10281-4]
44. Breiman, L. (2001). "Random forests." Machine learning. Vol. 45, No. 1, PP. 5-32. [DOI:10.1023/A:1010933404324]
45. Ghorbanzadeh, O., Rostamzadeh, H., Blaschke, T., Gholaminia, K., and Aryal, J. (2018). "A new GIS-based data mining technique using an adaptive neuro-fuzzy inference system (ANFIS) and k-fold cross-validation approach for land subsidence susceptibility mapping." Natural Hazards. Vol. 94, No. 2, PP. 497-517. [DOI:10.1007/s11069-018-3449-y]
46. Linden, A. (2006). "Measuring diagnostic and predictive accuracy in disease management: an introduction to receiver operating characteristic (ROC) analysis." Journal of evaluation in clinical practice. Vol. 12, No. 2, PP. 132-139. [DOI:10.1111/j.1365-2753.2005.00598.x]
47. Ghorbanzadeh, O., Blaschke, T., Aryal, J., and Gholaminia, K. (2020). "A new GIS-based technique using an adaptive neuro-fuzzy inference system for land subsidence susceptibility mapping." Journal of Spatial Science. Vol. 65, No. 3, PP. 401-418. [DOI:10.1080/14498596.2018.1505564]
48. Shahabi, H., Khezri, S., Ahmad, B. B., and Hashim, M. (2014). "Landslide susceptibility mapping at central Zab basin, Iran: A comparison between analytical hierarchy process, frequency ratio and logistic regression models." Catena. Vol. 115, PP. 55-70. [DOI:10.1016/j.catena.2013.11.014]
49. Knevels, R., Petschko, H., Leopold, Ph., and Brenning, A. (2019). "Geographic Object-Based Image Analysis for Automated Landslide Detection Using Open-Source GIS Software." International Journal of Geo-Information. Vol. 8, No. 12, PP. 551-572. [DOI:10.3390/ijgi8120551]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Moharrami M, Jelokhani-Niaraki M. Landslide susceptibility mapping using statistical and machine learning models (case study: Austria). JGST 2023; 13 (2) : 7
URL: http://jgst.issgeac.ir/article-1-1150-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 13, Issue 2 (12-2023) Back to browse issues page
نشریه علمی علوم و فنون نقشه برداری Journal of Geomatics Science and Technology