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Abstract 

Background: Cracks serve as a vital indicator of a building's condition. Cracks may emerge due to various 
factors such as the age and design of the structure, soil properties beneath the building, or environmental impacts. 
For example, cracks caused by seismic activity pose significant risks to structural integrity and may lead to collapse 
if left unattended. Detecting and categorizing building cracks is critical for its effective maintenance and timely 
repairs. 

Objective: The aim of this study is to evaluate and compare the use of CNN models for the detection and 
classification of the cracks. 

Methods: In this study, cracks were categorized into four groups based on their severity. Four pre-trained 
models—VGG16, AlexNet, ResNet50, and a modified CNN model were used and their performance were 
assessed. Additionally, the combination of the models’ outputs was also used for detecting and categorizing the 
cracks and the resulted accuracy was evaluated. 

Results: The findings revealed that the ResNet50 model achieved the highest accuracy at 99.5%, while AlexNet 
produced the lowest accuracy at 88.2% and VGG16 98.3%. However, combining all four models together resulted 
in the accuracy rate of 91%. 

Conclusion: The results demonstrated how quickly and accurately deep learning can detect and classify cracks. 

Keywords: Convolutional Neural Network (CNN), VGG16, Alex net, Building Integrity Assessment, Structural Crack Analysis, 
Automated Inspection Techniques 
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1. Introduction 

In the field of civil engineering, early detection of 
defects, such as cracks, is crucial for effective 
maintenance and renovations on buildings. Early 
detection of cracks significantly enhances our ability 
to prolong the lifespan and improve the stability of 
concrete structures. Various factors contribute to the 
creation of different types of cracks. These includes 
soil shifting beneath the building, earthquake, and 
climate-based factors like temperature fluctuations 
and moisture penetration [1]. Some cracks also result 
from the advanced age of the building and its poor 
design and material. These cracks may lead to the 
deterioration of buildings if left unaddressed.  

Various crack detection methods have been 
developed over time, beginning with traditional 
manual infrared and thermal testing, ultrasonic 
testing, laser testing, and radiographic testing [2]. 
The effectiveness of these methods depends mainly 
on the skill and experience of inspectors. However, 
these approaches require significant maintenance 
costs, time, and expertise to identify cracks 
effectively. To address these limitations, several 
automated methods have been introduced, based on 
computer vision techniques like edge detection, 
intensity thresholding, and filtering. Modern 
approaches use UAVs equipped with cameras that 
have thermal sensors, LiDAR technology, or 3D 
cameras with RGB sensors [3] to systematically scan 
structures for cracks. These methods are relatively 
effective in detecting cracks. However, their ability 
to handle image noise caused by brightness 
variations, shadows, or rough surfaces remains 
limited. To address these challenges, several 
advanced approaches have been introduced that offer 
highly accurate and fast crack detection. Among 
these, deep learning (DL) emerges as a leading 
method due to its ability to process large volumes of 
data, handle various forms of noise, and deliver 
robust accuracy. Commonly used DL architectures in 
crack detection research include RNN, DNN, and 
CNN [4].CNNs, in particular, are a deep learning 
framework capable of addressing fundamental 
computer vision tasks such as image classification, 
object recognition, localization, and segmentation. 
Comprising multiple layers like convolution and 
pooling layers, CNN models are designed to extract 
meaningful features from images effectively [5-7]. 
This study focuses on the application and 
comparison of four convolutional neural networks 
(CNNs) used for classifying different types of cracks 
in concrete.  

In structural engineering, CNNs are increasingly 
used, particularly in Structural Health Monitoring 
(SHM), damage detection, vibration-based 
diagnostics, and condition assessment. One way 
CNNs contribute is by using UAVs with cameras for 
image-based inspection to identify surface defects 
through classification or localization [8-10]. 

 (Li and Zhao (2019), Chow et al. (2020), Dais et 
al. (2021) and. Huang and Wu (2022) [11], in this 
work, researchers aim to develop an optimal model 
capable of handling diverse conditions, including 
small datasets, while maintaining high accuracy in 
crack multi-classification. They compare their work 
with models that strike a balance between accuracy, 
cost, and robustness, such as Alexnet. Additionally, 
residual connections in ResNet-50 are used to train 
deeper networks, alongside simpler architecture 
models like VGG16. 

This paper is organized into five sections. The 
first section serves as an introduction. The second 
section reviews several studies that have used deep 
learning techniques for crack detection. The third 
section outlines the methodology used in this 
research. The final two sections present the results 
and compare them with the findings of other studies. 

2. Literature Review 

Deep learning has revolutionized the field of civil 
structure defect detection, providing substantial 
advancements over traditional inspection methods. 
Chow et al. (2020) highlighted the effectiveness of 
deep learning in identifying and categorizing 
building defects under varying environmental 
conditions, such as changes in lighting and camera 
angles [9]. They recommended further improvements 
to deep learning models to enhance accuracy. Liu et 
al. (2020) developed a technique that combines deep 
and conventional image analysis methods to identify 
rebars in Ground Penetrating Radar (GPR) data, 
achieving an accuracy of 99.60% ± 0.85%. They 
suggested that a larger database would further 
enhance the model's robustness [12]. Another study 
used a Convolutional Neural Network (CNN) to 
categorize Impact-Echo (IE) waveforms, achieving 
an accuracy between 45% and 81%. The researchers 
highlighted the need for further refinement of the 
CNN model. Lee et al. (2020) utilized deep learning 
to find cracks in railroad infrastructure, measuring 
the largest crack width with high accuracy through 
semantic segmentation within a deep CNN 
architecture [13]. C. Zhang et al. (2020) proposed a 
single-stage algorithm for the visual identification of 
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defects in concrete bridges using the You Only Look 
Once (YOLOv3) real-time object detection technique 
[14]. Their improved algorithm achieved a detection 
precision of up to 80% and 47% at Intersection-over-
Union (IoU) metrics of 0.5 and 0.75, respectively, 
outperforming the original YOLOv3 and Faster 
Region-based Convolutional Neural Network (Faster 
RCNN) with ResNet-101. Bae et al. (2021) 
introduced the crack network (SrcNet) to detect 
defects with an increased pixel resolution, improving 
the accuracy by 24% compared to traditional 
techniques [15]. Kim and Cho (2019) employed a 
Mask R-CNN for detecting and specifying crack 
widths on concrete buildings, achieving reliable 
detection for cracks equal to or wider than 0.3mm, 
but with more errors for widths less than 0.1mm 
[16]. Li et al. (2019) used a Fully Convolutional 
Network (FCN) to identify various forms of damage 
such as efflorescence, fractures, spalling, and holes 
[8]. Despite its effectiveness, the model struggled to 
determine the damage level. Liang (2019) enhanced 
a method for examining reinforced post-accident 
concrete using CNN layers for semantic 
segmentation, object identification, and image 
classification [17]. The study highlighted the need 
for real-time deterioration evaluation and detection. 
Ni et al. (2019) introduced a new technique, 
Convolutional feature fusion and pixel-level 
categorization (CDN), for automated crack detection 
at the pixel level, achieving high precision without 
the need for manually designed low-level features 
[18]. Ali et al. (2021) evaluated four deep learning 
techniques (ResNet-50, Inception V3, VGG-16, and 
VGG-19) across eight datasets, revealing the 
significant impact of dataset heterogeneity and size 
on model effectiveness [19].  Shatnawi (2018) 
suggested a 6-layer CNN structure for recognizing 
pavement surface cracks, validated with extensive 
datasets [20]. Cha et al. (2017) merged CNN with 
sliding window methods to identify building surface 
defects, recommending network training with over 
10,000 images for improved accuracy [21]. Xu et al. 
(2019) created a 28-layer neural technique for 
detecting concrete bridge cracks, employing Atrous 
Spatial Pyramid Pooling (ASPP) and deep 
convolution to reduce model parameters [22]. 
Loprencipe (2020) proposed an automatic pavement 
crack recognition model using an ensemble of CNN 
models, which achieved a high crack probability 
score [23]. Pauly et al. (2017) developed three 
distinct CNN architectures for crack identification, 
positioning, and feature extraction in Ground 
Penetrating Radar (GPR) images [24]. Yang (2018) 

introduced a Fully Convolutional Network (FCN) for 
automatic crack detection and measurement, utilizing 
downsampling and upsampling techniques [25].  
 

Table 1. A review of papers that use CNN algorithms to 
recognize cracks. 

Reference Best model Accuracy Dataset 

(Xu et al. 
2019) [22] 

CNN atrous convolution, 
Atrous Spatial Pyramid 
Pooling (ASPP) module 
and depthwise separable 

convolution. 

96.37% 8272 

(Dais et al. 
2021) [10] U-net-MobileNet 95.3 ٪ 351 

(Islam et al. 
2022) [33] 

VGG16,ResNet18, 
DenseNet161, and 

AlexNet 

99.90%, 
99.60%, 
99.80%, 

and 99.90% 

20,000 

(Cha, Choi, 
and 

Büyüköztürk 
2017) [21] 

CNN with a sliding 
window 98% 332 

(Le, Nguyen, 
and Le 2021) 

[5] 
CNN 99.7% 40,000 

(Silva and 
Lucena 2018) 

[2] 
InceptionV3 0.9898% 12,000 

(Silva and 
Lucena 2018) 

[2] 
CNN 92.27% 3500 

(Peyman.Baba
ei 2023) [34] 

Resnet50,MobileNetv2,V
GG16 

96.64%, 
97.33%, 
97.61% 

51839 

(S. M. 
Mousavi and 

Hosseini 
2023) [35] 

InceptionV3 96.943% 10239 

(M. Mousavi 
and, Soodeh 

Hosseini, 
2023) [35] 

InceptionResNetV2, 
InceptionV3 

99.366%, 
96.943% 

10239 
CT Scan, 

5228  
X-ray 

 
Li and Zhao (2019) modified AlexNet to detect 

cracks in concrete surfaces, achieving 99.09% 
accuracy despite noisy conditions [8]. A. Zhang et al. 
(2018) developed CrackNet II, addressing processing 
speed and detecting fine cracks in 3D road surfaces 
[26]. Transfer learning models, such as those by 
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Google and the Visual Geometry Group (VGG), 
have been shown to reduce training time while 
maintaining high accuracy [27-29]. Gopalakrishnan 
et al. (2017) used a pre-trained VGG16 model for 
crack detection, finding it more dependable and 
faster than traditional CNN models [30]. K. Zhang et 
al. (2018) utilized an ImageNet-based pre-trained 
model for crack recognition and sealing in surface 
images, with impressive results [31]. Sun and Wang 
(2018) combined UAV and pre-trained DL models 
for efficient infrastructure preservation [32], while 
Dais et al. (2021) enhanced Inception V3 for 
detecting building damage in concrete water pipes 
[10]. Huang and Wu (2022) used YOLOv5 to 
identify pavement cracks, achieving over 88.1% 
detection accuracy and quick identification times 
[11]. Finally, Table 1 shows a comparison between 
different researchers who depend on CNN for crack 
detection. 

3. Methodology 

In this study, the researcher applied several steps 
to the models before classifying the crack images, as 
illustrated in (Figure 1). The researchers initiated the 
compilation of a dataset containing various types of 
concrete images. The dataset was then cleaned and 
noise was removed to help improve the training 
ability. After that, the researchers modified four 
CNN models from Kaggle to classify images of 
cracks in concrete structures. We used four CNN 
models, including VGG16, Resnet50, Alex Net, and 
a modified model, for this purpose. The researchers 
trained these models to produce four image classes 
that were aligned with the requirements of our study. 
Finally, we used accuracy metrics as shown in 
(equation 1) to assess each model's accuracy and 
select the model with the highest accuracy. 

Accuracy= (୘୔ା୘୒)
 ୘୔ା୘୒ା୊୔ା୊୒ଶୟ

           (1) 

Precision= (TP)/ (TP+FP)                        (2) 

Recall= (TP)/ (TP+FN)                                        (3) 

where: 
TP (True Positives): The number of correctly 
predicted positive samples. 
TN (True Negatives): The number of correctly 
predicted negative samples. 
FP: (False Positives): The number of incorrectly 
predicted positive samples. 

FN (False Negatives): The number of incorrectly 
predicted negative samples. 

3.1. Model Architecture 

CNN is generally considered a deep learning 
algorithm. It consists of multiple layers, such as 
convolution and pooling, responsible for feature 
extraction. Additionally, it applies a fully connected 
layer for image classification. However, CNN 
models have different sub-models, such as VGG16 
and Resnet50. Each sub-model has a unique 
architecture, parameters, and training techniques that 
differ from each other (as appears in Table 3). For 
instance, the VGG16 model consists of 13 
convolution layers and three fully connected layers 
with 3*3 kernels. VGG16 is the simplest and uses 
simple kernel convolution. Dropout layers help in 
regularizing the model by randomly setting a fraction 
of input units to zero during training, thereby 
preventing the co-adaptation of neurons. Hyper-
parameters, such as the epoch values for all four 
models were standardized to 10 epochs each. This 
adjustment is aimed at achieving a uniform training 
regimen and evaluating model performance under 
consistent conditions. 

3.2. Overall Framework 

Figure 2 explains the structure of our work 
process from collecting the dataset to classifying the 
cracks. The proposed methodology consists of three 
main stages: data collection, pre-processing and 
training, and classification. 

 Dataset Description 
A comprehensive dataset was created by 

collecting images of various types of cracks (The 
width of cracks varies significantly, with larger 
cracks (exceeding 1 cm) generally exerting 
detrimental effects, such as those associated with 
foundation or soil movement (e.g., Crack1). In 
contrast, smaller cracks, such as those arising from 
volumetric changes in materials like shrinkage 
cracks (e.g., Crack3 and Crack4), typically have a 
negligible structural impact. Meanwhile, cracks 
induced by bending and shear stresses (e.g., 
Crack2) are of particular concern but can be 
effectively remediated through established 
structural rehabilitation methods) from various 
Kaggle 
sources(https://www.kaggle.com/datasets/lakshaym
iddha/crack-segmentation-dataset), consisting of 
4977 images of crack 1 with a resolution of (227× 
227), 211 images of crack 2 with a resolution of 
(384×544), 162 images of crack 3 with a resolution 
(544×384), and 221 images of crack 4 with a 
resolution (448×448) as shown in Figure(1). Images 

https://www.kaggle.com/datasets/lakshaym
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were scaled to a uniform resolution of 256 × 256 
pixels using Python code, using 256×256 pixel 
images in deep learning models improves the 
ability to capture detailed images, which can 
improve output accuracy in tasks that need high 
visual precision. However, this comes with higher 
computational costs, increased GPU memory needs, 
and longer training times. Providing a robust 
foundation for model training. 

 
 
 

Figure 1. The different type of cracks 
 

3.3. Pre-processing and Training 

Images were resized and augmented such as 
(rescale =1/255.0, rotation range=30, zoom range 
=0.4, horizontal _flip=True) to enhance the dataset's 
diversity and improve the model’s generalization. 
The data was then split into training (60%), 
validation (20%), and testing (20%) groups. Data 
Standardization Images were transformed into arrays 
of pixel values and standardized to ensure consistent 
input data for the models. As mentioned before, 
various CNN architectures, including VGG16, 
ResNet50, and Alex Net, were used for model 
training. The modified CNN model was trained using 
convolutional layers to extract image features. The 
pooling layers were used to reduce the spatial 
dimensions of the feature maps, decreasing over 
fitting and reducing training time. However, an 
optimization algorithm like Adams was used to 
improve model performance by minimizing the loss 
function. Activation functions like ReLU were 
applied after each convolutional or fully connected 
layer to introduce non-linearity into the model. 

Crack Classification 

The final stage involved classifying the images 
into four categories (crack1, crack2, crack3, and 
crack4) based on the severity and their impact on the 
concrete structure. The proposed method aimed to 
achieve high accuracy in detecting and categorizing 
cracks while effectively handling large datasets and 
overcoming image noise. (Figure 2) shows the 
overall framework of the proposed method.  

 
Figure 2. The overall framework of the proposed method. 

 
Table 2. Matrices for models.  

Deep learning 
models Accuracy (%) Precision 

(%) Recall (%) 

Model 1 (CNN 
modification) 89.32 95.2 87.9 

Model 2 
(VGG16) 98.32 97.5 98.3 

Model 3 (Alex 
Net) 88.02 89.3 84 

Model 4 
(Resnet50) 99.5 99.5 99.4 

In summary, this methodology leverages 
advanced CNN architectures and rigorous data 
preparation to develop a robust model for crack 
detection and classification in concrete structures. 
The proposed approach aims to provide accurate and 
efficient defect categorization, enhancing the 
maintenance and safety of civil infrastructures. 
Furthermore, this study demonstrates the merits of 
utilizing pre-trained models initially trained on large 
datasets and then retraining them on a smaller 
dataset, particularly for crack classification tasks. 
This approach enhances model performance by 
retaining the generalized features learned during pre-
training while significantly reducing the 
computational time required for training. 

4. Results 

The study compared the performance of four 
different CNN models for concrete crack 
classification. Among them, Model 4 (Resnet50) 
performed the best with a training accuracy of 99.5% 
shown in (Table 2) and a low training loss of 0.01%. 
The validation accuracy for Model 4 was 97%, with 
a validation loss of 0.08%. The best-performing 
model 4 achieves this because it has wide support 
and sufficient depth, which doesn't require excessive 
resources. Additionally, residual connections assist 
in training deeper networks, offering a good balance 
between depths and training stability. The models 
were evaluated using the categorical cross-entropy 
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loss function and precision metrics, confirming they 
did not suffer from over fitting. The improved model, 
created by combining all four models, achieved an 
accuracy score of 90.72% with a loss of 13.39%. 
Although this combined model provided high 
accuracy, it required 15.3 minutes to complete its 
task. While the results are promising, increasing the 
dataset size would be beneficial. Specifically, the 
number of images and the distribution of the 
different types of cracks in the dataset should be 
detailed. Providing more specific metrics used for 
model assessment would also enhance the clarity of 
the results. 

Furthermore, the models were compiled utilizing 
the Adam optimizer, with a dropout rate of 0.5 
before the ReLU activation function. The loss 
function was set to categorical cross entropy, and the 
training period was standardized to 10 epochs for all 
models to ensure quick execution. 

Overall, our results demonstrate that deep 
learning is a promising approach for accurately 
categorizing cracks in concrete structures. By 
modifying and combining existing models, we 
achieved high accuracy without significant 
adjustments to network architecture. Future research 
could focus on expanding the dataset and exploring 
pixel-level data models for multi-classification tasks, 
potentially leading to more accurate and efficient 
manners for concrete crack detection and 
classification. This could significantly enhance the 
safety and longevity of structures. 

5. Discussion 

The objective of this research was to leverage 
deep learning for accurate categorization of cracks in 
concrete structures. Each of the four trained models 
was modified to optimize performance. For instance, 
Model 1 was enhanced with an additional layer and 
increased parameters. Model 2 (VGG16), which has 
the highest accuracy as shown in (Figure 3) with a 
low loss value, featured 13 Conv2D layers, 5 max-
pooling layers, and 512 neurons per layer which are 
shown in (Table 3) The model's structure 
demonstrated enhanced stability and exhibited no 
issues with adding conventional layers. Model 4 
(Resnet50) comprises 53 Conv2D layers and 6 max-
pooling layers. Our findings show that increasing the 
number of convolutional layers and neurons generally 
improves model accuracy, with some challenges. One 
of these challenges is over fitting with a small training 
dataset, especially with unseen data. Other problems 
are that larger numbers of neurons lead to increased 

computational cost and longer training times. So, to 
get a suitable accuracy, the model must have a 
suitable number of convolutional layers, neurons, and 
hyper-parameters. Also, using appropriate techniques 
like data augmentation helps the model to be more 
robust and improves its performance. This technique 
involves rotation to assist the model to adapt to 
different orientations. In addition, scaling the dataset 
was useful for recognizing images at various scales. 
On the other hand, (Figure 4) shows that accuracy has 
increased with increased training epochs. Conversely, 
the loss decreases as the number of epochs increases. 
As appears in this figure, validation loss began with a 
0.48 value until reaching 0.19, which confirms the 
model’s capacity to achieve a high classification 
accuracy. This was evident when comparing our 
results to those of other studies, which employed 
different models for crack identification. By 
combining the four models, we developed a CNN 
model that achieved a balanced accuracy without 
extensive adjustments to network architecture or 
parameter counts as shown in (figure5). This 
combined approach effectively addressed the 
accuracy weaknesses of individual models. 
Furthermore, when our researcher is compared with 
others such as N. M., & Sarhan, A. M. (2021) [29] in 
multi-class classification, our researcher achieves 
higher accuracy results and Develop a novel model 
that corresponds better with the way we operate. 
 

Table 3. Architectures layers for CNN models. 

Models Conv2D Max-
pool BN Dense Flatten Dropout 

Model1 (CNN 
modification) 11 5 0 3 1 2 

Model2 
(VGG16) 13 5 0 1 1 0 

Model3 
(Alex Net) 

5 3 9 4 1 3 

Model4 
(Resnet50) 53 6 45 0 0 0 

 

 
Figure 3. Model metrics (accuracy, precision, recall)  
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Figure 4. Accuracy and loss function of models 

 
 

 

 

 
Figure 5. Architectures of (CNN) modification model 

6. Conclusion 

This study introduced a deep learning approach 
to classify crack images in concrete structures into 
four categories based on severity. By combining and 
modifying four pre-trained models—VGG16, 
AlexNet, and ResNet50—within a CNN framework, 
a notable accuracy rate of 91% was achieved. This 
demonstrates the potential of our model for early 
detection of concrete cracks, thereby preventing 
long-term damage to buildings. To enhance the 
robustness of our model, we employed data 
augmentation techniques, including rescaling, 
rotation, and horizontal flipping, which increased the 
variety and quantity of training samples. 
Additionally, sourcing diverse crack images from 
various online databases contributed to the improved 
performance. The results of this study suggest that 
further expanding the dataset and employing 
advanced modified models that operate on pixel-
level data could lead to even higher accuracy rates. 
Future research should also explore integrating other 
deep-learning techniques and real-time data 
processing to enhance the models’ efficiency and 
reliability. In summary, our work presents a 
significant step towards the development of more 
accurate and efficient methods for detecting and 
classifying concrete cracks. In the future, we 
recommend exploring this topic more extensively, 
including measuring crack dimensions or integrating 
deep learning with tools such as GIS to illustrate the 
locations and three-dimensional representations of 

Model 3 

Model 1 

Model 2 
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the cracks in structures. In addition, UAVs can be 
used with deep learning to detect and classify cracks 
automatically. Replace the pre-trained model's final 

layers with new layers specific to them and utilise 
additional hyper parameters to enhance classification 
accuracy in models with lower performance. 
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